SEARCH

SEARCH BY CITATION

REFERENCES

  • Ailliot P, Monbet V, Prevosto M. 2006. An autoregressive model with time-varying coefficients for wind fields. Environmetrics 17: 107117.
  • Akhmatov V. 2007. Influence of wind direction on intense power fluctuations in large offshore windfarms in the North Sea. Wind Engineering 31: 5964.
  • Chatfield C. 2004. The Analysis of Time-Series: An Introduction (6th edn). Chapman & Hall/CRC: London.
  • Collings IB, Rydén T. 1998. A new maximum likelihood gradient technique algorithm for on-line hidden Markov model identification. In Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Seattle, WA.
  • Collings IB, Krishnamurthy V, Moore JB. 1994. On-line identification of hidden Markov models via prediction error techniques. IEEE Transactions on Signal Processing 42: 35353539.
  • Corradi V, Swanson NR. 2007. Nonparametric bootstrap procedures for predictive inference based on recursive estimation schemes. International Economic Review 48: 67109.
  • Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E. 2008. A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews 12: 17251744.
  • Craig BA, Sendi PP. 2002. Estimation of the transition matrix of a discrete-time Markov chain. Health Economics 11: 3342.
  • Dorea CCY, Zhao LC. 2002. Nonparametric density estimation in hidden Markov models. Statistical Inference for Stochastic Processes 5: 5564.
  • Douc R, Moulines E, Rydén T. 2004. Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regimes. Annals of Statistics 32: 22542304.
  • Ea Energy Analyses. 2007. 50% wind power in Denmark by 2025: English summary. Technical Report, Ea Energy Analyses, Copenhagen, Denmark. Available: http://www.windpower.org [16 July 2010].
  • Focken U, Lange M, Monnich M, Waldl H-P, Beyer H-G, Luig A. 2002. Short-term prediction of the aggregated power output of wind farms: a statistical analysis of the reduction of the prediction error by spatial smoothing effects. Journal of Wind Engineering and Industrial Aerodynamics 90: 231246.
  • Giebel G, Kariniotakis G, Brownsword R. 2003. The state of the art in short-term prediction of wind power: a literature overview. Technical report, ANEMOS EU project, deliverable report D1.1. Available: http://www.anemos-project.eu [16 July 2010].
  • Gneiting T, Larson K, Westrick K, Genton MG, Aldrich E. 2006. Calibrated probabilistic forecasting at the Stateline wind energy center: the regime-switching space–time method. Journal of the American Statistical Association 101: 968979.
  • Gneiting T, Balabdaoui F, Raftery AE. 2007. Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society B 69: 243268.
  • Hall P, Rieck A. 2001. Improving coverage accuracy of nonparametric prediction intervals. Journal of the Royal Statistical Society B 63: 717725.
  • Hamilton JD. 1989. A new approach to the economic analysis of nonstationary time-series and business cycles. Econometrica 57: 357384.
  • Hendersen AR, Morgan C, Smith B, Sørensen HC, Barthelmie RJ, Boesmans B. 2003. Offshore wind energy in Europe: a review of the state-of-the-art. Wind Energy 6: 3552.
  • Hering AS, Genton MG. 2009. Powering up with space–time wind forecasting. Journal of the American Statistical Association 105: 92104.
  • Hoerl AE. 1962. Application of ridge analysis to regression problems. Chemical Engineering Progress 58: 5459.
  • Holst U, Lindgren G, Holst J, Thuvesholmen M. 1994. Recursive estimation in switching autoregressions with a Markov regime. Journal of Time Series Analysis 15: 489506.
  • Johansen TA. 1997. On Tikhonov regularization, bias and variance in nonlinear system identification. Automatica 33: 441446.
  • Kristoffersen JR, Christiansen P. 2003. Horns Rev offshore wind farm: its main controller and remote control system. Wind Engineering 27: 351359.
  • Krolzig H-M. 1997. Markov-Switching Autoregressions: Modeling, Statistical Inference and Application to Business Cycle Analysis. Lecture Notes in Economics and Mathematical Systems, Vol. 454. Springer: Berlin.
  • LeGland F, Mevel L. 1997. Recursive estimation in hidden Markov models. In Proceedings of IEEE Conference on Decision and Control, San Diego, CA.
  • Ljung L, Söderström T. 1983. Theory and Practice of Recursive Estimation. MIT Press: Boston, MA.
  • Madsen H. 2007. Time-Series Analysis. Chapman & Hall/CRC: London.
  • Madsen H, Pinson P, Nielsen TS, Nielsen HAA, Kariniotakis G. 2005. Standardizing the performance evaluation of short-term wind power prediction models. Wind Engineering 29: 475489.
  • Mandelbaum R. 2002. Reap the wild wind. IEEE Spectrum 39: 3439.
  • Møller JK, Nielsen HAA, Madsen H. 2008. Time-adaptive quantile regression. Computational Statistics and Data Analysis 52: 12921303.
  • Nielsen HAA, Nielsen TS, Madsen H, Badger J, Giebel G, Landberg L, Sattler K, Voulund L, Tøfting J. 2006. From wind ensembles to probabilistic information about future wind power production: results from an actual application. In Proceedings of IEEE PMAPS Conference: Probabilistic Methods Applied to Power Systems, Stockholm, Sweden.
  • Pinson P. 2006. Estimation of the uncertainty in wind power forecasting. PhD thesis, Ecole des Mines de Paris. Available: http://pastel.paristech.org [16 July 2010].
  • Pinson P, Madsen H. 2009. Ensemble-based probabilistic forecasting at Horns Rev. Wind Energy 12: 137155.
  • Pinson P, Nielsen HAA, Møller JK, Madsen H, Kariniotakis G. 2007. Nonparametric probabilistic forecasts of wind power: required properties and evaluation. Wind Energy 10: 497516.
  • Pinson P, Christensen LEA, Madsen H, Sørensen PE, Donovan MH, Jensen LE. 2008. Regime-switching modelling of the fluctuations of offshore wind generation. Journal of Wind Engineering and Industrial Aerodynamics 96: 23272347.
  • Rahman M, Rahman R, Pearson LR. 2006. Quantiles for finite mixtures of Normal distributions. International Journal of Mathematical Education in Science and Technology 37: 352357.
  • Rydén T. 1997. On recursive estimation for hidden Markov models. Stochastic Processes and their Applications 66: 7996.
  • Sanchez I. 2006. Short-term prediction of wind energy production. International Journal of Forecasting 22: 4356.
  • Sanchez I. 2008. Adaptive combination of forecasts with application to wind energy. International Journal of Forecasting 22: 679693.
  • Scott SL. 2002. Bayesian methods for hidden Markov models: recursive computing in the 21th century. Journal of the American Statistical Association 97: 337351.
  • Sloughter JM, Gneiting T, Raftery AE. 2009. Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. Journal of the American Statistical Association 105: 2535.
  • Sørensen PE, Cutululis NA, Vigueras-Rodriguez A, Jensen LE, Hjerrild J, Donovan MH, Madsen H. 2007. Power fluctuations from large wind farms. IEEE Transactions on Power Systems 22: 958965.
  • Sørensen PE, Cutululis NA, Vigueras-Rodriguez A, Madsen H, Pinson P, Jensen LE, Hjerrild J, Donovan MH. 2008. Modelling of power fluctuations from large offshore wind farms. Wind Energy 11: 2943.
  • Stiller JC, Radons G. 1999. Online estimation of hidden Markov models. 1999. IEEE Signal Processing Letters 6: 213215.
  • Stone M. 1974. Cross-validation and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society B 36: 111147.
  • Tikhonov AN, Arsenin VY. 1977. Solutions of Ill-Posed Problems. Winston: Washington, DC.
  • Toth Z, Tallagrand O, Candille G, Zhu Y. 2003. Probability and ensemble forecasts. In Forecast Verification: A Practitioner's Guide in Atmospheric Science, Jolliffe IT, Stephenson DB (eds). Wiley: New York; 137163.
  • Vincent CL, Giebel G, Pinson P, Madsen H. 2008. Resolving non-stationary spectral information in wind speed time-series using the Hilbert–Huang transform. Journal of Applied Meteorology and Climatology 49: 253267.