Power Generation and Electrochemical Analysis of Biocathode Microbial Fuel Cell Using Graphite Fibre Brush as Cathode Material



To improve cathodic efficiency and sustainability of microbial fuel cell (MFC), graphite fibre brush (GFB) was examined as cathode material for power production in biocatalysed-cathode MFC. Following 133-h mixed culturing of electricity-producing bacteria, the MFC could generate a reproducible voltage of 0.4 V at external resistance (REX) of 100 Ω. Maximum volumetric power density of 68.4 W m–3 was obtained at a current density of 178.6 A m–3. Upon aerobic inoculation of electrochemically active bacteria, charge transfer resistance of the cathode was decreased from 188 to 17 Ω as indicated by electrochemical impedance spectroscopy (EIS) analysis. Comparing investigations of different cathode materials demonstrated that biocatalysed GFB had better performance in terms of half-cell polarisation, power and Coulombic efficiency (CE) over other tested materials. Additionally, pH deviation of electrolyte in anode and cathode was also observed. This study provides a demonstration of GFB used as biocathode material in MFC for more efficient and sustainable electricity recovery from organic substances.