Durable Transition-Metal-Carbide-Supported Pt–Ru Anodes for Direct Methanol Fuel Cells

Authors


Abstract

Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. Pt–Ru catalysts supported on MoC, WC, and Vulcan XC-72R are prepared, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro-oxidation are studied by cyclic voltammetry. All the electro-catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide-supported electro-catalysts towards methanol electro-oxidation is found to be higher than carbon-supported catalysts before and after ADT. The study suggests that Pt–Ru/MoC and Pt–Ru/WC catalysts are more durable than Pt–Ru/C. Direct methanol fuel cells (DMFCs) with Pt–Ru/MoC and Pt–Ru/WC anodes also exhibit higher performance than the DMFC with Pt–Ru/C anode.

Ancillary