SEARCH

SEARCH BY CITATION

References

  • Aerts, R., and F. S. Chapin III (1999), The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns, in Advances in Ecological Research, edited by A. H. Fitter and D. G. Raffaelli, pp. 167, Academic Press.
  • Almond, P. C., and P. J. Tonkin (1999), Pedogenesis by upbuilding in an extreme leaching and weathering environment, and slow loess accretion, South Westland, New Zealand, Geoderma, 92(1–2), 136.
  • Blakemore, L. C., B. K. Searle, and B. K. N. Daly (1987), Methods for chemical analysis of soils, Soil Bureau Scientific Report, 80, 103
  • Campo, J., M. Maass, V. Jaramillo, A. Martínez-Yrízar, and J. Sarukhán (2001), Phosphorus cycling in a Mexican tropical dry forest ecosystem, Biogeochem., 53(2), 161179.
  • Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin (1999), Changing sources of nutrients during four million years of ecosystem development, Nature, 397(6719), 491497.
  • Coates, G., and S. Nathan (1993), The Haast Landscape, Institute of Geological & Nuclear Sciences, Lower Hutt.
  • Condron, L. M., B. L. Turner, and B. J. Cade-Menun (2005), Chemistry and dynamics of soil organic phosphorus, in Phosphorus Agriculture and the Environment, edited by J. T. Sims and A. N. Sharpley, pp. 87121, American Society of Agronomy, Madison.
  • Crews, T. E., K. Kitayama, J. H. Fownes, R. H. Riley, D. A. Herbert, D. Mueller-Dombois, and P. M. Vitousek (1995), Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii, Ecol., 76(5), 14071424.
  • Cross, A. F., and W. H. Schlesinger (1995), A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems, Geoderma, 64(3–4), 197214.
  • Das, R., D. Lawrence, P. D'Odorico, and M. DeLonge (2011), Impact of land use change on atmospheric P inputs in a tropical dry forest, J. Geophys. Res., 116(G1), G01027.
  • Dezzeo, N., and N. Chacón (2006), Nutrient fluxes in incident rainfall, throughfall, and stemflow in adjacent primary and secondary forests of the Gran Sabana, southern Venezuela, Forest Ecol. Manag., 234(1–3), 218226.
  • Eger, A., P. C. Almond, and L. M. Condron (2011), Pedogenesis, soil mass balance, phosphorus dynamics and vegetation communities across a Holocene soil chronosequence in a super-humid climate, South Westland, New Zealand, Geoderma, 163(3–4), 185196.
  • Eger, A., P. C. Almond, and L. M. Condron (2012), Upbuilding pedogenesis under active loess deposition in a super-humid, temperate climate—Quantification of deposition rates, soil chemistry and pedogenic thresholds, Geoderma, 189–190(0), 491501.
  • Egli, M., D. Filip, C. Mavris, B. Fischer, J. Götze, S. Raimondi, and J. Seibert (2012), Rapid transformation of inorganic to organic and plant-available phosphorous in soils of a glacier forefield, Geoderma, 189–190(0), 215226.
  • Goff, J. R., S. L. Nichol, and H. L. Rouse (2003), The New Zealand Coast, 312 pp., Dunmore Press, Palmerston North.
  • Harrison, R., R. S. Swift, and P. J. Tonkin (1994), A study of two soil development sequences located in a montane area of Canterbury, New Zealand, III. Soil phosphorus transformations, Geoderma, 61(3–4), 151163.
  • Heartsill-Scalley, T., F. N. Scatena, C. Estrada, W. H. McDowell, and A. E. Lugo (2007), Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico, J. Hydrol., 333(2–4), 472485.
  • Hedley, M. J., J. W. B. Stewart, and B. S. Chauhan (1982), Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations, Soil Sci. Soc. Am. J., 46(5), 970976.
  • Herrera, R., T. Merida, N. Stark, and C. Jordan (1978), Direct phosphorus transfer from leaf litter to roots, Naturwissenschaften, 65, 208209.
  • Johnson, A. H., J. Frizano, and D. R. Vann (2003), Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure, Oecologia, 135(4), 487499.
  • Johnson, D. L., and D. Watson-Stegner (1987), Evolution model of pedogenesis, Soil Sci., 143(5), 349366.
  • Jordan, C. F., and R. Herrera (1981), Tropical rain forests: Are nutrients really critical?, Am. Nat., 117(2), 167180.
  • Kellman, M., J. Hudson, and K. Sanmugadas (1982), Temporal variability in atmospheric nutrient influx to a tropical ecosystem, Biotropica, 14(1), 19.
  • Koele, N., F. Storch, and E. E. Hildebrand (2011), The coarse-soil fraction is the main living space of fungal hyphae in the BhBs horizon of a Podzol, J. Plant Nutr. Soil Sci., 174(5), 750753.
  • Koerselman, W., and A. F. M. Meuleman (1996), The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation, J. Appl. Ecol., 33(6), 14411450.
  • Levett, M. P., A. F. Adams, T. W. Walker, and E. R. L. Wilson (1985), Weight and nutrient content of above-ground biomass and litter of a podocarp-hardwood forest in Westland, New Zealand, New Zealand Journal of Forestry Science, 15(1), 2335.
  • Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo (2006), Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates, J. Geophys. Res., 111(D10), D10202.
  • Murphy, J., and J. P. Riley (1962), A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta, 27, 3136.
  • Newman, E. I. (1995), Phosphorus inputs to terrestrial ecosystems, J. Ecol., 83(4), 713726.
  • Okin, G. S., N. Mahowald, O. A. Chadwick, and P. Artaxo (2004), Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems, Global Biogeochem. Cycles, 18, GB2005.
  • Olander, L. P., and P. M. Vitousek (2004), Biological and geochemical sinks for phosphorus in soil from a wet tropical forest, Ecosyst., 7(4), 404419.
  • Paytan, A., and K. McLaughlin (2011), Tracing the sources and biogeochemical cycling of phosphorus in aquatic systems using isotopes of oxygen in phosphate, in Handbook of Environmental Isotope Geochemistry, edited by M. Baskaran, pp. 419436, Springer, Berlin Heidelberg.
  • Peltzer, D. A., et al. (2010), Understanding ecosystem retrogression, Ecol. Monogr., 80(4), 509529.
  • Pett-Ridge, J. (2009), Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico, Biogeochem., 94(1), 6380.
  • Porder, S., P. Vitousek, O. Chadwick, C. Chamberlain, and G. Hilley (2007), Uplift, erosion, and phosphorus limitation in terrestrial ecosystems, Ecosyst., 10(1), 159171.
  • Potter, C. S., H. L. Ragsdale, and W. T. Swank (1991), Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy, J. Ecol., 79(1), 97115.
  • Rattenbury, M. S., R. Jongens, and S. C. Cox (2010), Geology of the Haast area. Institute of Geological and Nuclear Sciences 1:250000 Geological Map 14, 58 pp., GNS Science, Lower Hutt.
  • Reich, P. B., and J. Oleksyn (2004), Global patterns of plant leaf N and P in relation to temperature and latitude, Proc. Nat. Acad. Sci. U.S.A., 101(30), 11,00111,006.
  • Richardson, S., D. Peltzer, R. Allen, M. McGlone, and R. Parfitt (2004), Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence, Oecologia, 139(2), 267276.
  • Saunders, W. M. H., and E. G. Williams (1955), Observations on the determination of total organic phosphorus in soils, J. Soil Sci., 6(2), 254267.
  • Schoeneberger, P. J., D. A. Wysocki, E. C. Benham, and W. D. Broderson (1998), Field Book for Describing and Sampling Soils, Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln, NE.
  • Selmants, P. C., and S. C. Hart (2010), Phosphorus and soil development: Does the Walker and Syers model apply to semiarid ecosystems?, Ecol., 91(2), 474484.
  • Smith, B. F. L., and B. C. Bain (1982), A sodium hydroxide fusion method for the determination of total phosphate in soils, Commun. Soil Sci. Plan., 13(3), 185190.
  • Stark, N. M., and C. F. Jordan (1978), Nutrient retention by the root mat of an Amazonian rain forest, Ecol., 59(3), 434437.
  • Stoorvogel, J. J., N. Van Breemen, and B. H. Jassen (1997), The nutrient input by Harmattan dust to a forest ecosystem in Côte d'Ivoire, Africa, Biogeochem., 37(2), 145157.
  • Swap, R., M. Garstang, S. Greco, R. Talbot, and P. Kallberg (1992), Saharan dust in the Amazon Basin, Tellus B, 44(2), 133149.
  • Tessier, J. T., and D. J. Raynal (2003), Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation, J. Appl. Ecol., 40(3), 523534.
  • Tiessen, H., and J. O. Moir (1993), Characterization of available P by sequential extraction, in Soil Sampling and Methods of Analysis, edited by M. R. Carter and E. G. Gregorich, Canadian Society of Soil Science.
  • Tiessen, H., J. W. B. Stewart, and C. V. Cole (1984), Pathways of phosphorus transformations in soils of differing pedogenesis, Soil Sci. Soc. Am. J., 48(4), 853858.
  • Tiessen, H., P. Chacon, and E. Cuevas (1994), Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro, Oecologia, 99(1/2), 145150.
  • Tóbon, C., J. Sevink, and J. M. Verstraten (2004), Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia, Biogeochemistry, 70(1), 125.
  • Turner, B. L. (2008), Resource partitioning for soil phosphorus: A hypothesis, J. Ecol., 96(4), 698702.
  • Turner, B. L., L. Condron, S. Richardson, D. Peltzer, and V. Allison (2007), Soil Organic Phosphorus Transformations During Pedogenesis, Ecosyst., 10(7), 11661181.
  • Vitousek, P. M. (2004), Nutrient Cycling and Limitation, 223 pp., Princeton University Press, Princeton.
  • Vitousek, P. M., D. R. Turner, and K. Kitayama (1995), Foliar nutrients during long-term soil development in Hawaiian montane rain forest, Ecol., 76(3), 712720.
  • Walker, T. W., and J. K. Syers (1976), The fate of phosphorus during pedogenesis, Geoderma, 15(1), 119.
  • Wardle, D. A., L. R. Walker, and R. D. Bardgett (2004), Ecosystem properties and forest decline in contrasting long-term chronosequences, Sci., 305(5683), 509513.
  • Wardle, D. A., R. D. Bardgett, L. R. Walker, D. A. Peltzer, and A. Lagerström (2008), The response of plant diversity to ecosystem retrogression: Evidence from contrasting long-term chronosequences, Oikos, 117(1), 93103.
  • Wells, A., and J. Goff (2006), Coastal dune ridge systems as chronological markers of palaeoseismic activity: A 650-yr record from southwest New Zealand, The Holocene, 16(4), 543550.
  • Wells, A., and J. Goff (2007), Coastal dunes in Westland, New Zealand, provide a record of paleoseismic activity on the Alpine fault, Geol., 35(8), 731734.
  • Yang, X., and W. M. Post (2011), Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method, Biogeosci., 8(10), 29072916.
  • Yoo, K., and S. M. Mudd (2008a), Discrepancy between mineral residence time and soil age: Implications for the interpretation of chemical weathering rates, Geol., 36(1), 3538.
  • Yoo, K., and S. M. Mudd (2008b), Toward process-based modeling of geochemical soil formation across diverse landforms: A new mathematical framework, Geoderma, 146(1–2), 248260.