SEARCH

SEARCH BY CITATION

References

  • Abril, G., F. Guerin, S. Richard, R. Delmas, C. Galy-Lacaux, P. Gosse, A. Tremblay, L. Varfalvy, M. A. Dos Santos, and B. Matvienko (2005), Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana), Global Biogeochem. Cycles, 19(4), GB4007, doi:10.1029/2005GB002457.
  • Andersson, E., and S. Sobek (2006), Comparison of a mass balance and an ecosystem model approach when evaluating the carbon cycling in a lake ecosystem, Ambio, 35(8), 476483.
  • Bade, D. L., and J. J. Cole (2006), Impact of chemically enhanced diffusion on dissolved inorganic carbon stable isotopes in a fertilized lake, J. Geophys. Res. Oceans, 111, C01014, doi:10.1029/2004JC002684.
  • Birch, T. W., and E. H. Wharton (1982), Land use change in Ohio, 1952 to 1979, USDA Forest Service Resource Bulletin NE-70, Northeast Forest Experiment Station, Broomall, Pennsylvania, USA.
  • Buffam, I., M. G. Turner, A. R. Desai, P. C. Hanson, J. A. Rusak, N. R. Lottig, E. H. Stanley, and S. R. Carpenter (2011), Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district, Glob. Chang. Biol., 17(2), 11931211.
  • Canty, A., and B. Ripley (2010), boot: Bootstrap R (S-Plus) Functions. R package version 1.2-43.
  • Cole, J. J., and N. F. Caraco (1998), Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43(4), 647656.
  • Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz (1994), Carbon-dioxide supersaturation in the surface waters of lakes, Science, 265(5178), 15681570.
  • Cole, J. J., et al. (2007), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10(1), 171184.
  • Cole, J. J., D. L. Bade, D. Bastviken, M. L. Pace, and M. Van de Bogert (2010), Multiple approaches to estimating air-water gas exchange in small lakes, Limnol. Oceanogr.-Meth., 8, 285293.
  • Dean, W. E., and E. Gorham (1998), Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands, Geology, 26(6), 535538.
  • Del Giorgio, P. A., J. J. Cole, N. F. Caraco, and R. H. Peters (1999), Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes, Ecology, 80(4), 14221431.
  • Demarty, M., J. Bastien, A. Tremblay, R. H. Hesslein, and R. Gill (2009), Greenhouse Gas Emissions from Boreal Reservoirs in Manitoba and Quebec, Canada, Measured with Automated Systems, Environ. Sci. Technol., 43(23), 89088915.
  • Dillon, P. J., and L. A. Molot (1997), Dissolved organic and inorganic carbon mass balances in central Ontario lakes, Biogeochemistry, 36(1), 2942.
  • Downing, J. A., et al. (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 51(5), 23882397.
  • Downing, J. A., J. J. Cole, J. J. Middelburg, R. G. Striegl, C. M. Duarte, P. Kortelainen, Y. T. Prairie, and K. A. Laube (2008), Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century, Global Biogeochem. Cycles, 22(1).
  • Duarte, C. M., and Y. T. Prairie (2005), Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems, Ecosystems, 8(7), 862870.
  • Duarte, C. M., Y. T. Prairie, C. Montes, J. J. Cole, R. Striegl, J. Melack, and J. A. Downing (2008), CO2 emissions from saline lakes: A global estimate of a surprisingly large flux, J. Geophys. Res. Biogeosci., 113(G4), 7.
  • Einola, E., M. Rantakari, P. Kankaala, P. Kortelainen, A. Ojala, H. Pajunen, S. Makela, and L. Arvola (2011), Carbon pools and fluxes in a chain of five boreal lakes: A dry and wet year comparison, J. Geophys. Res. Biogeosci., 116, 13.
  • Finlay, K., P. R. Leavitt, B. Wissel, and Y. T. Prairie (2009), Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains, Limnol. Oceanogr., 54(6), 25532564.
  • Finlay, K., P. R. Leavitt, A. Patoine, and B. Wissel (2010), Magnitudes and controls of organic and inorganic carbon flux through a chain of hard-water lakes on the northern Great Plains, Limnol. Oceanogr., 55(4), 15511564.
  • Green, W. J., D. E. Canfield, and B. A. Steinly (1985), Spatial variations in and control on the calcite saturation index in Acton Lake, Ohio, Freshwater Biol., 15(5), 525533.
  • Hagenbuch, E. J. (2010), Complex Relationships Among Watershed Land Cover and Reservoir Morphometry, Productivity, and Zooplankton Communities, 42 pp, Miami University.
  • Hanson, P. C., A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley (2004), A model of carbon evasion and sedimentation in temperate lakes, Glob. Chang. Biol., 10(8), 12851298.
  • Harrison, J. A., R. J. Maranger, R. B. Alexander, A. E. Giblin, P. A. Jacinthe, E. Mayorga, S. P. Seitzinger, D. J. Sobota, and W. M. Wollheim (2009), The regional and global significance of nitrogen removal in lakes and reservoirs, Biogeochemistry, 93(1–2), 143157.
  • Jonsson, A., J. Karlsson, and M. Jansson (2003), Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden, Ecosystems, 6(3), 224235.
  • Karl, T. R., G. A. Meehl, C. D. Miller, S. J. Hassol, A. M. Waple, and W. L. Murrary (2008), Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribben, and U.S. Pacific Islands, in A report by the U.S. climate change science program and the subcommittee on global change research, p. 164, Department of Commerce, NOAA's National Climatic Data Center, Washington, D.C., USA.
  • Kling, G. W., G. W. Kipphut, and M. C. Miller (1991), Arctic lakes and streams as gas conduits to the atmosphere - the implications for tundra carbon budgets, Science, 251(4991), 298301.
  • Kling, G. W., G. W. Kipphut, and M. C. Miller (1992), The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiologia, 240(1–3), 2336.
  • Knoll, L. B., M. J., Vanni, and W. H., Renwick (2003), Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use, Limnol. and Oceanogr., 48(2), 608617.
  • Knoll, L. B. (2011), Linking watershed-scale features and processes to carbon, nitrogen, and phosphorus fluxes, 125 pp, Miami University.
  • Lehrter, J. C., and J. Cebrian (2010), Uncertainty propagation in an ecosystem nutrient budget, Ecol. Appl., 20(2), 508524.
  • Lopez, P., R. Marce, and J. Armengol (2011), Net heterotrophy and CO(2) evasion from a productive calcareous reservoir: Adding complexity to the metabolism-CO(2) evasion issue, J. Geophys. Res. Biogeosci., 116, 14.
  • Medley, K. E., B. W. Okey, G. W. Barrett, M. F. Lucas, and W. H. Renwick (1995), Landscape change with agricultural intensification in a rural watershed, southwestern Ohio, USA, Landsc. Ecol., 10(3), 161176.
  • Meybeck, M. (1995), Global distribution of lakes, Springer-Verlag, Berlin, Germany.
  • Mulholland, P. J., and J. W. Elwood (1982), The role of lake and reservoir sediments as sinks in the perturbed global carbon-cycle, Tellus, 34(5), 490499.
  • Osburn, C. L., D. P. Morris, K. A. Thorn, and R. E. Moeller (2001), Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation, Biogeochemistry, 54(3), 251278.
  • Overholt, E. P., C. E. Williamson, M. J. Vanni, W. H. Renwick, and L. B. Knoll (2008), Reservoirs as regulators of climate change: using optical tools to characterize dissolved organic carbon, in AGU Chapman Conference: Special Issue of Limnology and Oceanography, Lake Tahoe, Nevada.
  • Plummer, L. N., and E. Busenberg (1982), The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0-degrees and 90-degrees, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochim. Cosmochim. Acta, 46(6), 10111040.
  • Porterfield, G. (1972), Computation of fluvial-sediment discharge, in Techniques of Water Resource Investigations of the United States Geological Survey, Book 3, U.S. Geological Survey, Washington DC, USA.
  • Rantakari, M., and P. Kortelainen (2005), Interannual variation and climatic regulation of the CO2 emission from large boreal lakes, Glob. Chang. Biol., 11(8), 13681380.
  • Rantakari, M., and P. Kortelainen (2008), Controls of organic and inorganic carbon in randomly selected Boreal lakes in varied catchments, Biogeochemistry, 91(2–3), 151162.
  • Raymond, P. A., and N. H. Oh (2007), An empirical study of climatic controls on riverine C export from three major U.S. watersheds, Global Biogeochem. Cycles, 21(2) GB2022, doi:10.1029/2006GB002783.
  • Raymond, P. A., N. F. Caraco, and J. J. Cole (1997), Carbon dioxide concentration and atmospheric flux in the Hudson River, Estuaries, 20(2), 381390.
  • Renwick, W. H., M. J. Vanni, Q. Zhang, and J. Patton (2008), Water quality trends and changing agricultural practices in a Midwest US watershed, 1994–2006, J. Environ. Qual., 37(5), 18621874.
  • Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess (2002), Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2, Nature, 416(6881), 617620.
  • Ritchie, J. C. (1989), Carbon content of sediments of small reservoirs, Water Resour. Bull., 25(2), 301308.
  • Sarmiento, J. L., and E. T. Sundquist (1992), Revised budget for the oceanic uptake of anthropogenic carbon-dioxide, Nature, 356(6370), 589593.
  • Schlesinger, W. H., and J. M. Melack (1981), Transport of organic carbon in the worlds rivers, Tellus, 33(2), 172187.
  • Smith, S. V., W. H. Renwick, J. D. Bartley, and R. W. Buddemeier (2002), Distribution and significance of small, artificial water bodies across the United States landscape, Sci. Total Environ., 299(1–3), 2136.
  • Sobek, S., G. Algesten, A. K. Bergstrom, M. Jansson, and L. J. Tranvik (2003), The catchment and climate regulation of pCO(2) in boreal lakes, Glob. Chang. Biol., 9(4), 630641.
  • Sobek, S., B. Soderback, S. Karlsson, E. Andersson, and A. K. Brunberg (2006), A carbon budget of a small humic lake: An example of the importance of lakes for organic matter cycling in boreal catchments, Ambio, 35(8), 469475.
  • Solomon, C. T., D. A. Bruesewitz, D. C. Richardson, K. C. Rose, M. C. Van de Bogert, P. C. Hanson, T. K. Kratz, B. Larget, R. Adrian, B. L. Babin, C. -Y. Chiu, D. P. Halmiton, E. E. Gaiser, S. Hendricks, V. Istvánovecs, A. Laas, D. M. O'Donnell, M. L. Pace, E. Ryder, P. A. Staehr, T. Torgersen, M. J. Vanni, K. C. Weathers and G. Zhu (2013), Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe, Limnol. and Oceanogr., in press.
  • St Louis, V. L., C. A. Kelly, E. Duchemin, J. W. M. Rudd, and D. M. Rosenberg (2000), Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate, Bioscience, 50(9), 766775.
  • Stainton, M. P. (1973), Syringe gas-stripping procedure for gas-chromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonates in sediments, J. Fish. Res. Board Can., 30(10), 14411445.
  • Stallard, R. F. (1998), Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochem. Cycles, 12(2), 231257.
  • Stets, E. G., R. G. Striegl, G. R. Aiken, D. O. Rosenberry, and T. C. Winter (2009), Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets, J. Geophys. Res. Biogeosci., 114, 14.
  • Striegl, R. G., and C. M. Michmerhuizen (1998), Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes, Limnol. Oceanogr., 43(7), 15191529.
  • Tranvik, L. J., et al. (2009), Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54(6), 22982314.
  • Vanni, M. J., W. H. Renwick, J. L. Headworth, J. D. Auch, and M. H. Schaus (2001), Dissolved and particulate nutrient flux from three adjacent agricultural watersheds: A five-year study, Biogeochemistry, 54(1), 85114.
  • Vanni, M. J., W. H. Renwick, A. M. Bowling, M. J. Horgan, and A. D. Christian (2011), Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use, Freshwater Biol., 56(5), 791811.
  • Wang, S. L., K. M. Yeager, G. J. Wan, C. Q. Liu, Y. C. Wang, and Y. C. Lu (2012), Carbon export and HCO3- fate in carbonate catchments: A case study in the karst plateau of southwestern China, Appl. Geochem., 27(1), 6472.
  • Wanninkhof, R., and M. Knox (1996), Chemical enhancement of CO2 exchange in natural waters, Limnol. Oceanogr., 41(4), 689697.
  • Wetzel, R. G. (2001), Limnology, Elsevier Academic Press, San Diego, CA, USA.