SEARCH

SEARCH BY CITATION

References

  • Amyot, M., G. Mierle, D. R. S. Lean, and D. J. McQueen (1994), Sunlight-induced formation of dissolved gaseous mercury in lake waters, Environ. Sci. Technol., 28, 23662371.
  • Berdinskii, V. L., L. L. Yasina, and A. L. Buchachenko (2004), The magnetic isotope effect and the separation of isotopes in radical reactions: A theory, Russ. J. Phys. Chem., 78, 261264.
  • Bergquist, B. A., and J. D. Blum (2007), Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, 318, 417420.
  • Bergquist, R. A., and J. D. Blum (2009), The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation, Elements, 5, 353357.
  • Bigeleisen, J. (1996), Nuclear size and shape effects in chemical reactions, isotope chemistry of the heavy elements, J. Am. Chem. Soc., 118, 36763680.
  • Bigeleisen, J., and M. G. Mayer (1947), Calculation of equilibrium constants for isotopic exchange reactions, J. Chem. Phys., 15, 261267.
  • Biswas, A., J. D. Blum, B. A. Bergquist, G. J. Keeler, and Z. Q. Xie (2008), Natural mercury isotope variation in coal deposits and organic soils, Environ. Sci. Technol., 42, 83038309.
  • Blum, J. D., and B. A. Bergquist (2007), Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353359.
  • Blum, J. D., M. W. Johnson, J. D. Gleason, J. D. Demers, M. S. Landis, and S. Krupa (2012), Mercury concentration and isotopic composition of epiphytic tree lichens in the Athabasca Oil Sands, in K. E. Percy, editor. Alberta Oil Sands: Energy, Industry and the Environment, Elsevier, Oxford, UK.
  • Buchachenko, A. L. (2001), Magnetic isotope effect: nuclear spin control of chemical reactions, J. Phys. Chem. A, 105, 999510011.
  • Buchachenko, A. L. (2009), Mercury isotope effects in the environmental chemistry and biochemistry of mercury-containing compounds, Russ. Chem. Rev., 78, 319328.
  • Buchanan, B. B., W. Gruissem, and R. L. Jones (2000), Biochemistry & molecular biology of plants, Am. Soc. Plant Biologists, pp. 507509.
  • Carignan, J., N. Estrade, J. E. Sonke, and O. F. X. Donard (2009), Odd isotope deficits in atmospheric Hg measured in lichens, Environ. Sci. Technol., 43, 56605664.
  • Carpi, A., and S. E. Lindberg (1997), Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge, Environ. Sci. Technol., 31, 20852091.
  • Carpi, A., and S. E. Lindberg (1998), Application of a teflon (TM) dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil, Atmos. Environ., 32, 873882.
  • Carpi, A., A. Frei, D. Cocris, R. McCloskey, E. Contreras, and K. Ferguson (2007), Analytical artifacts produced by a polycarbonate chamber compared to a teflon chamber for measuring surface mercury fluxes, Anal. Bioanal. Chem., 388, 361365.
  • Chen, J. B., H. Hintelmann, X. B. Feng, and B. Dimock (2012), Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada, Geochim. Cosmochim. Acta, 90, 3346.
  • Choi, H. D., and T. M. Holsen (2009a), Gaseous mercury emissions from unsterilized and sterilized soils: the effect of temperature and UV radiation, Environ. Pollut., 157, 16731678.
  • Choi, H. D., and T. M. Holsen (2009b), Gaseous mercury fluxes from the forest floor of the Adirondacks, Environ. Pollut., 157, 592600.
  • Converse, A. D., A. L. Riscassi, and T. M. Scanlon (2010), Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow, Atmos. Environ., 44, 21762185.
  • Demers, J. D., C. T. Driscoll, T. J. Fahey, and J. B. Yavitt (2007), Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA, Ecol. Appl., 17, 13411351.
  • Demers, J. D., C. T. Driscoll, and J. B. Shanley (2010), Mercury mobilization and episodic stream acidification during snowmelt: role of hydrologic flow paths, source areas, and supply of dissolved organic carbon. Water Resour. Res., 46, W01511, doi:10.1029/2008WR007021.
  • Dickson, R. E., K. F. Lewin, J. G. Isebrands, M. D. Coleman, W. E. Heilman, D. E. Riemenschneider, J. Sober, G. E. Host, D. R. Zak, K. S. Hendrey, K. S. Pregitzer, and D. F. Karnosky (2000), Forest atmosphere carbon transfer storage-II (FACTS II) - the aspen free air CO2 and O3 enrichment (FACE) project: an overview. General technical report NC-214, US Department of agriculture forest service north central experiment station, St Paul, MN.
  • Dittman, J. A., J. B. Shanley, C. T. Driscoll, G. R. Aiken, A. T. Chalmers, J. E. Towse, and P. Selvendiran (2010), Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern US streams, Water Resour. Res., 46, W07522, doi:10.1029/2009WR008351.
  • Engle, M. A., M. S. Gustin, D. W. Johnson, J. F. Murphy, W. W. Miller, R. F. Walker, J. Wright, and M. Markee (2006), Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire, Sci. Total Environ., 367, 222233.
  • Engle, M. A., M. S. Gustin, and H. Zhang (2001), Quantifying natural source mercury emissions from the Ivanhoe mining district, north-central Nevada, USA, Atmos. Environ., 35, 39873997.
  • Ericksen, J. A., M. S. Gustin, S. E. Lindberg, S. D. Olund, and D. P. Krabbenhoft (2005), Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using a stable isotope, Environ. Sci. Technol., 39, 80018007.
  • Ericksen, J. A., M. S. Gustin, M. Xin, P. J. Weisberg, and G. C. J. Fernandez (2006), Air-soil exchange of mercury from background soils in the United States, Sci. Total Environ., 366, 851863.
  • Estrade, N., J. Carignan, and O. F. X. Donard (2010), Isotope tracing of atmospheric mercury sources in an urban area of northeastern France, Environ. Sci. Technol., 44, 60626067.
  • Estrade, N., J. Carignan, and O. F. X. Donard (2011), Tracing and quantifying anthropogenic mercury sources in soils of northern France using isotopic Signatures, Environ. Sci. Technol., 45, 12351242.
  • Estrade, N., J. Carignan, J. E. Sonke, and O. F. X. Donard (2009), Mercury isotope fractionation during liquid-vapor evaporation experiments, Geochim. Cosmochim. Acta, 73, 26932711.
  • Feng, X. B., S. F. Wang, G. A. Qiu, Y. M. Hou, and S. L. Tang (2005), Total gaseous mercury emissions from soil in Guiyang, Guizhou, China, J. Geophys. Res.-Atmos., 110, D14306, doi:10.1029/2004JD005643.
  • Fitzgerald, W. F., and R. P. Mason (1997), Biogeochemical cycling of mercury in the marine environment. Pages 53-111 in metal ions in biological systems, Vol 34.
  • Fraser, E. C., S. M. Landhausser, and V. J. Lieffers (2006), Does mechanical site preparation affect trembling aspen density and growth 9-12 years after treatment? New Forest, 32, 299306.
  • Gehrke, G. E., J. D. Blum, and M. Marvin-DiPasquale (2011a), Sources of mercury to San Francisco bay surface sediment as revealed by mercury stable isotopes, Geochim. Cosmochim. Acta, 75, 691705.
  • Gehrke, G. E., J. D. Blum, D. G. Slotton, and B. K. Greenfield (2011b), Mercury isotopes link mercury in San Francisco bay forage fish to surface Sediments, Environ. Sci. Technol., 45, 12641270.
  • Ghosh, S., Y. F. Xu, M. Humayun, and L. Odom (2008), Mass-independent fractionation of mercury isotopes in the environment, Geochem. Geophys. Geosyst., 9, Q03004, doi:10.1029/2007GC001827.
  • Ghosh, S., E. A. Schauble, G. Couloume, J. D. Blum, and B. A. Bergquist (2013), Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liqui-vapor evaporation experiments, Chem. Geol. 336, 512.
  • Gratz, L. E., G. J. Keeler, J. D. Blum, and L. S. Sherman (2010), Isotopic composition and fractionation of mercury in great lakes precipitation and ambient Air, Environ. Sci. Technol., 44, 77647770.
  • Graydon, J. A., V. L. St Louis, H. Hintelmann, S. E. Lindberg, K. A. Sandilands, J. W. M. Rudd, C. A. Kelly, M. T. Tate, D. P. Krabbenhoft, and I. Lehnherr (2009), Investigation of uptake and retention of atmospheric Hg(II) by boreal forest plants using stable Hg isotopes, Environ. Sci. Technol., 43, 49604966.
  • Graydon, J. A., V. L. St Louis, S. E. Lindberg, H. Hintelmann, and D. P. Krabbenhoft (2006), Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber, Environ. Sci. Technol., 40, 46804688.
  • Grigal, D. F. (2003. Mercury sequestration in forests and peatlands: a review, J. Environ. Qual., 32, 393405.
  • Grigal, D. F., R. K. Kolka, J. A. Fleck, and E. A. Nater (2000), Mercury budget of an upland-peatland watershed, Biogeochemistry, 50, 95109.
  • Gustin, M. S., H. Biester, and C. S. Kim (2002), Investigation of the light-enhanced emission of mercury from naturally enriched substrates, Atmos. Environ., 36, 32413254.
  • Gustin, M. S., M. F. Coolbaugh, M. A. Engle, B. C. Fitzgerald, R. E. Keislar, S. E. Lindberg, D. M. Nacht, J. Quashnick, J. J. Rytuba, C. Sladek, H. Zhang, and R. E. Zehner (2003), Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol., 43, 339351.
  • Gustin, M. S., M. Engle, J. Ericksen, S. Lyman, J. Stamenkovic, and M. Xin (2006), Mercury exchange between the atmosphere and low mercury containing substrates, Appl. Geochem., 21, 19131923.
  • Gustin, M. S., J. A. Ericksen, D. E. Schorran, D. W. Johnson, S. E. Lindberg, and J. S. Coleman (2004), Application of controlled mesocosms for understanding mercury air-soil-plant exchange, Environ. Sci. Technol., 38, 60446050.
  • Gustin, M. S., et al. (1999), Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces, J. Geophys. Res.-Atmospheres, 104, 2183121844.
  • Gustin, M. S., S. E. Lindberg, and P. J. Weisberg (2008), An update on the natural sources and sinks of atmospheric mercury, Appl. Geochem., 23, 482493.
  • Hall, B. D., and V. L. St. Louis (2004), Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes, Environ. Sci. Technol., 38, 50105021.
  • Hedgecock, I. M., and N. Pirrone (2004), Chasing quicksilver: modeling the atmospheric lifetime of Hg-(g)(0) in the marine boundary layer at various latitudes, Environ. Sci. Technol., 38, 6976.
  • Hintelmann, H., R. Harris, A. Heyes, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. Lindberg, J. W. M. Rudd, K. J. Scott, and V. L. St Louis (2002), Reactivity and mobility of new and old mercury deposition in a Boreal forest ecosystem during the first year of the METAALICUS study, Environ. Sci. Technol., 36, 50345040.
  • Hofmockel, K. S., D. R. Zak, K. K. Moran, and J. D. Jastrow (2011), Changes in forest soil organic matter pools after a decade of elevated CO(2) and O(3), Soil Biol. Biochem., 43, 15181527.
  • Iverfeldt, A. (1991), Mercury in Forest Canopy Throughfall Water and Its Relation to atmospheric deposition, Water Air Soil Pollut., 56, 553564.
  • Jackson, T. A., D. M. Whittle, M. S. Evans, and D. C. G. Muir (2008), Evidence for mass-independent and mass-dependent fractionation of the stable isotopes of mercury by natural processes in aquatic ecosystems, Appl. Geochem., 23, 547571.
  • Karnosky, D. F., Z. E. Gagnon, R. E. Dickson, M. D. Coleman, E. H. Lee, and J. G. Isebrands (1996a), Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of populus tremuloides clones and seedlings, Can. J. For. Res.-Revue Canadienne De Recherche Forestiere, 26, 2337.
  • Karnosky, D. F., Z. Gagnon, R. E. Dickson, P. Pechter, M. Coleman, O. Kull, A. Sober, and J. G. Isebrands (1996b), Effects of ozone and CO2 on the growth and physiology of aspen. Pages 21-21 in 1995 meeting of the northern global change program, Proceedings.
  • Karnosky, D. F., et al. (2003), Tropospheric O-3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project, Funct. Ecol., 17, 289304.
  • Keeler, G., G. Glinsorn, and N. Pirrone (1995), Particulate Mercury in the Atmosphere - Its significance, transport, transformation and sources, Water Air Soil Pollut., 80, 159168.
  • King, J. S., M. E. Kubiske, K. S. Pregitzer, G. R. Hendrey, E. P. McDonald, C. P. Giardina, V. S. Quinn, and D. F. Karnosky (2005), Tropospheric O-3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2, New Phytol., 168, 623635.
  • Kolka, R. K., D. F. Grigal, E. S. Verry, and E. A. Nater (1999a), Mercury and organic carbon relationships in streams draining forested upland peatland watersheds, J. Environ. Qual., 28, 766775.
  • Kolka, R. K., E. A. Nater, D. F. Grigal, and E. S. Verry (1999b), Atmospheric inputs of mercury and organic carbon into a forested upland bog watershed, Water Air Soil Pollut., 113, 273294.
  • Kolka, R. K., D. F. Grigal, E. A. Nater, and E. S. Verry (2001), Hydrologic cycling of mercury and organic carbon in a forested upland-bog watershed, Soil Sci. Soc. Am. J., 65, 897905.
  • Kritee, K., T. Barkay, and J. D. Blum (2009), Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury, Geochim. Cosmochim. Acta, 73, 12851296.
  • Kritee, K., J. D. Blum, and T. Barkay (2008), Mercury stable isotope fractionation during Reduction of Hg(II) by different microbial pathways, Environ. Sci. Technol., 42, 91719177.
  • Kritee, K., J. D. Blum, M. W. Johnson, B. A. Bergquist, and T. Barkay (2007), Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms, Environ. Sci. Technol., 41, 18891895.
  • Kubiske, M. E., K. S. Pregitzer, D. R. Zak, and C. J. Mikan (1998), Growth and C allocation of populus tremuloides genotypes in response to atmospheric CO2 and soil N availability, New Phytol., 140, 251260.
  • Kuiken, T., M. Gustin, H. Zhang, S. Lindberg, and B. Sedinger (2008a), Mercury emission from terrestrial background surfaces in the eastern USA. II: Air/surface exchange of mercury within forests from south Carolina to new England, Appl. Geochem., 23, 356368.
  • Kuiken, T., H. Zhang, M. Gustin, and S. Lindberg (2008b), Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year, Appl. Geochem., 23, 345355.
  • Landis, M. S., and G. J. Keeler (1997), Critical evaluation of a modified automatic wet-only precipitation collector for mercury and trace element determinations, Environ. Sci. Technol., 31, 26102615.
  • Lauretta, D. S., B. Klaue, J. D. Blum, and P. R. Buseck (2001), Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites, Geochim. Cosmochim. Acta, 65, 28072818.
  • Lefticariu, L., J. D. Blum, and J. D. Gleason (2010), Mercury isotopes in Illinois basin coal: organic and inorganic constituents, Geochim. Cosmochim. Acta, 74, A577A577.
  • Lefticariu, L., J. D. Blum, and J. D. Gleason (2011), Mercury isotopic evidence for multiple mercury sources in Coal from the Illinois basin, Environ. Sci. Technol., 45, 17241729.
  • Lindberg, S. E. (1996), Forests and the global biogeochemical cycle of mercury: the importance of understanding air/vegetation exchange processes. Pages 359-380 in global and regional mercury dycles: sources, fluxes and mass balances.
  • Lindberg, S. E., and W. J. Stratton (1998), Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air, Environ. Sci. Technol., 32, 4957.
  • Lindberg, S. E., et al. (1999), Increases in mercury emissions from desert soils in response to rainfall and irrigation, J. Geophys. Res.-Atmos., 104, 21,87921,888.
  • Lindberg, S. E., H. Zhang, A. F. Vette, M. S. Gustin, M. O. Barnett, and T. Kuiken (2002), Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils: Part 2 - effect of flushing flow rate and verification of a two-resistance exchange interface simulation model, Atmos. Environ., 36, 847859.
  • Lyman, S. N., M. S. Gustin, E. M. Prestbo, and F. J. Marsik (2007), Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods, Environ. Sci. Technol., 41, 19701976.
  • Mason, R. P., and G. R. Sheu (2002), Role of the ocean in the global mercury cycle, Global Biogeochem. Cycles, 16(4), 40–1 to 40–14, doi:10.1029/2001GB001440.
  • Mauclair, C., J. Layshock, and A. Carpi (2008), Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces, Appl. Geochem., 23, 594601.
  • Meili, M. (1991), The Coupling of mercury and organic-matter in the biogeochemical cycle - towards a mechanistic model for the boreal forest zone, Water Air Soil Pollut., 56, 333347.
  • Mierle, G., and R. Ingram (1991), The Role of Humic Substances in the Mobilization of mercury from watersheds, Water Air Soil Pollut., 56, 349357.
  • Millhollen, A. G., M. S. Gustin, and D. Obrist (2006a), Foliar mercury accumulation and exchange for three tree species, Environ. Sci. Technol., 40, 60016006.
  • Millhollen, A. G., D. Obrist, and M. S. Gustin (2006b), Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil, Chemosphere, 65, 889897.
  • Moore, C., and A. Carpi (2005), Mechanisms of the emission of mercury from soil: Role of UV radiation, J. Geophys. Res.-Atmos., 110, D24302, doi:10.1029/2004JD005567.
  • Mosbaek, H., J. C. Tjell, and T. Sevel (1988), Plant uptake of airborne mercury in background areas, Chemosphere, 17, 12271236.
  • Mowat, L. D., V. L. St Louis, J. A. Graydon, and I. Lehnherr (2011), Influence of forest canopies on the deposition of methylmercury to boreal ecosystem watersheds, Environ. Sci. Technol., 45, 51785185.
  • Mulak, T., S. M. Landhausser, and V. J. Lieffers (2006), Effects of timing of cleaning and residual density on regeneration of juvenile aspen stands, For. Ecol. Manage., 232, 198204.
  • Nacht, D. M., and M. S. Gustin (2004), Mercury emissions from background and altered geologic units throughout Nevada, Water Air Soil Pollut., 151, 179193.
  • Natali, S. M., S. A. Sanudo-Wilhelmy, R. J. Norby, H. Zhang, A. C. Finzi, and M. T. Lerdau (2008), Increased mercury in forest soils under elevated carbon dioxide, Oecologia, 158, 343354.
  • Nater, E. A., and D. F. Grigal (1992), Regional trends in mercury distribution across the great-lakes states, north central USA, Nature, 358, 139141.
  • Point, D., J. E. Sonke, R. D. Day, D. G. Roseneau, K. A. Hobson, S. S. Vander Pol, A. J. Moors, R. S. Pugh, O. F. X. Donard, and P. R. Becker (2011), Methylmercury photodegradation influenced by sea-ice cover in arctic marine ecosystems, Nature Geosci., 4, 188194.
  • Rasmussen, P. E., G. C. Edwards, R. J. Kemp, C. R. Fitzgerald-Hubble, and W. H. Schroeder (1998), Towards an improved natural sources inventory for mercury. Pages 73–83 in metals and the environment.
  • Rea, A. W., G. J. Keeler, and T. Scherbatskoy (1995), The Deposition of Mercury in throughfall and litterfall in a northern mixed hardwood forest. Abstracts of Papers of the American Chemical Society 210:75–GEOC.
  • Rea, A. W., G. J. Keeler, and T. Scherbatskoy (1996), The deposition of mercury in throughfall and litterfall in the lake champlain watershed: a short-term study, Atmos. Environ., 30, 32573263.
  • Rea, A. W., S. E. Lindberg, and G. J. Keeler (2000), Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces, Environ. Sci. Technol., 34, 24182425.
  • Rea, A. W., S. E. Lindberg, and G. J. Keeler (2001), Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall, Atmos. Environ., 35, 34533462.
  • Rea, A. W., S. E. Lindberg, T. Scherbatskoy, and G. J. Keeler (2002), Mercury accumulation in foliage over time in two northern mixed-hardwood forests, Water Air Soil Pollut., 133, 4967.
  • Rutter, A. P., J. J. Schauer, M. M. Shafer, J. E. Creswell, M. R. Olson, M. Robinson, R. M. Collins, A. M. Parman, T. L. Katzman, and J. L. Mallek (2011), Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment, Atmos. Environ., 45, 848855.
  • Schauble, E. A. (2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements, Geochim. Cosmochim. Acta, 71, 21702189.
  • Schroeder, W. H., and J. Munthe (1998), Atmospheric mercury - an overview, Atmos. Environ., 32, 809822.
  • Schroeder, W. H., S. Beauchamp, G. Edwards, L. Poissant, P. Rasmussen, R. Tordon, G. Dias, J. Kemp, B. Van Heyst, and C. M. Banic (2005), Gaseous mercury emissions from natural sources in Canadian landscapes, J. Geophys. Res.-Atmos., 110, D18302, doi:10.1029/2004JD005699.
  • Schuster, E. (1991. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - a review of the literature, Water Air Soil Pollut., 56, 667680.
  • Sellers, P., C. A. Kelly, J. W. M. Rudd, and A. R. MacHutchon (1996), Photodegradation of methylmercury in lakes, Nature, 380, 694697.
  • Senn, D. B., E. J. Chesney, J. D. Blum, M. S. Bank, A. Maage, and J. P. Shine (2010), stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern gulf of Mexico, Environ. Sci. Technol., 44, 16301637.
  • Shanley, J. B., P. F. Schuster, M. M. Reddy, D. A. Roth, H. E. Taylor, and G. R. Aiken (2002), Mercury on the move during snowmelt in Vermont, Eos Trans. AGU, 83, 4548.
  • Sherman, L. S., J. D. Blum, K. P. Johnson, G. J. Keeler, J. A. Barres, and T. A. Douglas (2010), Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight, Nature Geosci., 3, 173177.
  • Sherman, L. S., J. D. Blum, G. J. Keeler, J. D. Demers, and J. T. Dvonch (2012), Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes, Environ. Sci. Technol., 46, 382390.
  • Sherman, L. S., J. D. Blum, D. K. Nordstrom, R. B. McCleskey, T. Barkay, and C. Vetriani (2009), Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas basin sea-floor rift, Earth Planet. Sci. Lett., 279, 8696.
  • Shi, W. F., X. B. Feng, G. Zhang, L. L. Ming, R. S. Yin, Z. Q. Zhao, and J. Wang (2011), High-precision measurement of mercury isotope ratios of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan province, China, Chinese Sci. Bull., 56, 877882.
  • Smith, C. N., S. E. Kesler, J. D. Blum, and J. J. Rytuba (2008), Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California coast ranges, USA, Earth Planet. Sci. Lett., 269, 398406.
  • Smith, C. N., S. E. Kesler, B. Klaue, and J. D. Blum (2005), Mercury isotope fractionation in fossil hydrothermal systems, Geology, 33, 825828.
  • Sonke, J. E. (2011), A global model of mass independent mercury stable isotope fractionation. Geochim. Cosmochim. Acta, doi:10.1016/j.gca.2011.05.027.
  • Sonke, J. E., O. Pokrovsky, and V. Schevchenko (2011), Mercury stable isotopic compositions of lichens and mosses from the Russian (sub-)arctic. The 10th International conference on mercury as a global pollutant. Halifax, Nova Scotia, Canada.
  • St. Louis, V. L., J. W. M. Rudd, C. A. Kelly, B. D. Hall, K. R. Rolfhus, K. J. Scott, S. E. Lindberg, and W. Dong (2001), Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems, Environ. Sci. Technol., 35, 30893098.
  • Stamenkovic, J., and M. S. Gustin (2009), Nonstomatal versus Stomatal Uptake of Atmospheric Mercury, Environ. Sci. Technol., 43, 13671372.
  • Talhelm, A. F., K. S. Pregitzer, and D. R. Zak (2009), Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon, Ecol. Lett., 12, 12191228.
  • Urey, H. C. (1947. The Thermodynamic Properties of isotopic substances, J. Chem. Soc.:562581.
  • USEPA (1998), Method 1631: Measurement of mercury in water; revision E. U.S. Environmental protection agency, office of water, office of science and technology, engineering and analysis division (4303), Washington, D.C., USA.
  • Wallschlager, D., R. R. Turner, J. London, R. Ebinghaus, H. H. Kock, J. Sommar, and Z. F. Xiao (1999), Factors affecting the measurement of mercury emissions from soils with flux chambers, J. Geophys. Res.-Atmospheres, 104, 2185921871.
  • Wiederhold, J. G., C. J. Cramer, K. Daniel, I. Infante, B. Bourdon, and R. Kretzschmar (2010), Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg, Environ. Sci. Technol., 44, 41914197.
  • Xin, M., and M. S. Gustin (2007), Gaseous elemental mercury exchange with low mercury containing soils: investigation of controlling factors, Appl. Geochem., 22, 14511466.
  • Xin, M., M. Gustin, and D. Johnson (2007), Laboratory investigation of the potential for re-emission of atmospherically derived Hg from soils, Environ. Sci. Technol., 41, 49464951.
  • Yin, Y. J., H. E. Allen, C. P. Huang, and P. F. Sanders (1997), Interaction of Hg(II) with soil-derived humic substances, Anal. Chim. Acta, 341, 7382.
  • Zak, D. R., W. E. Holmes, K. S. Pregitzer, J. S. King, D. S. Ellsworth, and M. E. Kubiske (2007), Belowground competition and the response of developing forest communities to atmospheric CO2 and O-3, Global Change Biol., 13, 22302238.
  • Zambardi, T., J. E. Sonke, J. P. Toutain, F. Sortino, and H. Shinohara (2009), Mercury emissions and stable isotopic compositions at vulcano island (Italy), Earth Planet. Sci. Lett., 277, 236243.
  • Zhang, H., and S. E. Lindberg (1999), Processes influencing the emission of mercury from soils: A conceptual model, J. Geophys. Res.-Atmospheres, 104, 2188921896.
  • Zhang, H., S. E. Lindberg, and M. S. Gustin (2001), Nature of diel trend of mercury emission from soil: Current understanding and hypotheses. Abstracts of papers of the American chemical society 222:67–ENVR.
  • Zheng, W., and H. Hintelmann (2009), Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio, Geochim. Cosmochim. Acta, 73, 67046715.
  • Zheng, W., and H. Hintelmann (2010a), Isotope fractionation of mercury during Its photochemical reduction by low-molecular-weight organic compounds, J. Phys. Chem. A, 114, 42464253.
  • Zheng, W., and H. Hintelmann (2010b), Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light, J. Phys. Chem. A, 114, 42384245.
  • Zheng, W., D. Foucher, and H. Hintelmann (2007), Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase, J. Anal. Atom. Spectrom., 22, 10971104.