SEARCH

SEARCH BY CITATION

References

  • Alcântara, E., E. Novo, J. Stech, J. Lorenzzetti, C. Barbosa, A. Assireu, and A. Souza (2010), A contribution to understanding the turbidity behaviour in an Amazon floodplain, Hydrol. Earth Syst. Sci., 14(2), 351364.
  • Allard, T., T. Weber, C. Bellot, C. Damblans, M. Bardy, G. Bueno, E. Fritsch, and M. F. Benedetti (2011), Tracing weathering/erosion processes in the Rio Negro Basin (Brazil) with iron speciation: Insights from a spectroscopic approach, Chem. Geol., 280, 7988.
  • Alin, S., and T. Johnson (2007), Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake-atmosphere exchange estimates, Global Biogeochem. Cycles, 21, GB3002, doi:10.1029/2006GB002881.
  • Angradi, T. R. (1994), Trophic linkages in the lower Colorado River: Multiple stable isotope evidence, J. N. Am. Benthol. Soc., 13, 479495.
  • Araujo-Lima, C. A. R. M., B. R. Forsberg, R. Victoria, and L. A. Martinelli (1986), Energy sources for detritivorous fishes in the Amazon, Science, 234, 12561258.
  • Aufdenkampe, A. K., J. I. Hedges, J. E. Richey, A. V. Krusche, and C. A. Llerena (2001), Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin, Limnol. Oceanogr., 46(8), 19211935.
  • Aufdenkampe, A. K., E. Mayorga, J. I. Hedges, C. Llerena, P. D. Quay, J. Gudeman, A. V. Krusche, and J. E. Richey (2007), Organic matter in the Peruvian headwaters of the Amazon: Compositional evolution from the Andes to the lowland Amazon mainstem, Org. Geochem., 38, 337364.
  • Aufdenkampe, A. K., E. Mayorga, P. Raymond, J. M. Melack, S. C. Doney, S. Alin, R. Aalto, and K. Yoo (2011), Riverine coupling biogeochemical cycles between land, oceans and atmosphere, Front. Ecol. Environ., 9(1), 5360, doi:10.1890/100014.
  • Barbosa, C. C. F., E. M. L. M. Novo, J. M. Melack, M. Gastil-Buhl, and W. P. Waterloo (2010), Spatiotemporal patterns of limnological parameters on the Amazon floodplain, Limnology, 11(2), 155166, doi:10.1007/s10201-009-0305-5.
  • Barth, J. A. C., J. Veizer, and B. Mayer (1998), Origin of particulate organic carbon in the upper St. Lawrence: Isotopic constraints, Earth Planet. Sci. Lett., 162, 111121.
  • Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdemkampe, A. Richter, and L. J. Tranvik (2009), The boundless carbon cycle, Nat. Geosci., 2, 598600.
  • Bird, M. I., W. S. Fyfe, D. Pinheiro-Dick, and A. R. Chivas (1992), Carbon isotope indicators of catchment vegetation in the Brazilian Amazon, Global Biogeochem. Cycles, 6(3), 293306.
  • Bonnet, M.-P., G. Barroux, P. Seyler, G. Pecly, P. Moreira-Turcq, C. Lagane, G. Cochoneau, J. Viers, F. Seyler, and J.-L. Guyot (2005), Seasonal links between the Amazon corridor and its flood plain: The case of the varzea of Curuai, in Dynamics and Biogeochemistry of River Corridors and Wetlands, IAHS Publication 294, edited by L. Hearthwaite, B. Webb, D. Rosenberry, D. Weaver, and M. Hayash, pp. 6977.
  • Bonnet, M.-P., et al. (2008), Flooding hydrology in an Amazonian floodplain lake (Lago Grande de Curuaί), J. Hydrol., 349, 1830.
  • Cai, D. L., F. C. Tan, and J. M. Edmond (1988), Sources and transport of particulate organic carbon in the Amazon river and estuary, Estuarine Coastal Shelf Sci., 26, 114.
  • Cecanho, F. F. (2007), Composição da material orgânica nos sedimentos superficiais da Varzea do lago Grande de Curuai, Para, Brasil, Msc. Dissertation, University Federal Fluminense, Niteroi, Brazil, 54p.
  • Cole, J. J., and N. F. Caraco (2001), carbon in catchements: connecting terrestrial carbon losses with aquatic metabolism, Mar. Freshw. Res., 52, 101110.
  • Cole, J. J., et al. (2007), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, doi:10.1007/s10021-006-9013-8.
  • Cottereau, E., et al. (2007), Artemis, The new 14C AMS at LMC14 in Saclay, France, Radiocarbon, 49(2), 291299.
  • Devol, A. H., T. M. Zaret, and B. R. Forsberg (1984), Sedimentary organic matter diagenesis and its relation to the carbon budget of tropical Amazon floodplain lakes, Verh. Internat Verein. Limnol., 22, 12991304.
  • Ellis, E. E., J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. Brandão da Cunha (2012), Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin, Limnol. Oceanogr., 57(2), 527540.
  • Engle, D. L., J. M. Melack, R. D. Doyle, and T. R. Fisher (2008), High rates of net primary production and turnover of floating grasses on the Amazon floodplain: Implications for aquatic respiration and regional CO2 flux, Global Change Biol., 14, 369381.
  • Ertel, J. R., J. I. Hedges, A. H. Devol, J. E. Richey, and M. N. G. de Ribeiro (1986), Dissolved humic subtances of the Amazon River system, Limnol. Oceanogr., 31(4), 739754.
  • Gu, B., and V. Alexander (1996), Stable carbon evidence for atmospheric CO2 uptake by cyanobacterial surface scums in a eutrophic lake, Appl. Environ. Microbiol., 62, 18031804.
  • Hamilton, S. K., and W. M. Lewis (1992), Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela, Geochim. Cosmochim. Acta, 56, 42374246.
  • Hedges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. Devol, and U. Santos (1986a), Composition and fluxes of particulate organic material in the Amazon River, Limnol. Oceanogr., 31, 717738.
  • Hedges, J. I., J. R. Ertel, P. D. Quay, P. M. Grootes, J. E. Richey, A. H. Devol, G. W. Farwell, F. W. Schmidt, and E. Salati (1986b), Organic carbon-14 in the Amazon River system, Science, 231, 11291131.
  • Hedges, J. I., G. L. Cowie, J. E. Richey, P. D. Quay, R. Benner, M. Strom, and B. R. Forsberg (1994), Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids, Limnol. Oceanogr., 39, 743761.
  • Junk, W. J. (1997), The Central Amazon Floodplain: Ecology of a pulsing system, Ecological Studies 126, 525 pp. Springer Verlag, Berlin, Germany.
  • Junk, W. J., and M. T. Piedade (1997), Plant life in the floodplain with special reference to herbaceousplants, in The Central Amazon Floodplain: Ecology of a Pulsing System, Ecological Studies 126, 525 pp., pp. 147185, Springer Verlag, Berlin, Germany.
  • Kendall, C., S. R. Silva, and V. J. Kelly (2001), Carbon and nitrogen compositions of particulate organic matter in four large river systems across the United States, Hydrol. Process, 15, 13011346.
  • Lesack, L. F. W., and J. M. Melack (1995), Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake, Water Resour. Res., 31, 329345.
  • Lorenzen, C. J. (1967), Determination of chlorophyll and phaeopigments: Sectrophtometric equations, Limnol. Oceanogr., 12, 343346.
  • Maurice-Bourgoin, L., M. P. Bonnet, M. Martinez, P. J. Kosuth, G. Cochonneau, P. Moreira-Turcq, J. L. Guyot, P. Vauchel, N. Filizola, and P. Seyler (2007), Temporal dynamics of water and sediment exchanges between the Curuaί floodplain and the Amazon river main stream, Brazil, J. Hydrol., 335, 140156.
  • Mariotti, A., F. Gadel, P. Giresse, and K. Mouzeo (1991), Carbon isotope composition and geochemistry of particulate organic matter in the Congo River (Central Africa): Application to the study of Quaternary sediments off the mouth of the river, Chem. Geol., 86, 345357.
  • Martinelli, L. A., R. L. Victoria, P. B. de Camargo, M. C. Picollo, L. Mertes, J. E. Richey, A. H. Devol, and B. R. Forsberg (2003), Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (varzea) vegetation and sediment, Hydrol. Processes, 17, 12191229.
  • Martinez, J.-M., and T. Le Toan (2007), Mapping of flood dynamics and vegetation spatial distribution in the Amazon floodplain using multitemporal SAR data, Remote Sens. Environ., 108, 209223.
  • Mayorga, E., A. K. Aufdenkampe, C. A. Masiello, A. V. Krushe, J. I. Hedges, P. D. Quay, J. E. Richey, and T. A. Brown (2005), Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers, Nature, 436, 538541.
  • Melack, J. M., and T. R. Fisher (1990), Comparative limnology of tropical floodplain lakes with an emphasis on the central Amazon, Acta Limnol. Bras., 3, 148.
  • Melack, J. M., and B. R. Forsberg (2001), Biogeochemistry of Amazon floodplain lakes and associated wetlands, in The Biogeochemistry of the Amazon Basin, edited by M. E. McClain, R. L. Victoria, and J. E. Richey, pp. 235274, Oxford Univ. Press, New York.
  • Melack, J. M., L. L. Hess, M. Gastil, B. R. Forsberg, S. K. Hamilton, I. B. T. Lima, and E. M. L. M. Novo (2004), Regionalization of methane emissions in the Amazon Basin with microwave remote sensing, Glob. Change. Biol., 10, 530544.
  • Melack, J. M., and D. Engle (2009), An organic carbon budget for an Amazon floodplain lake, Verh. Internat Verein. Limnol., 30, 11791182.
  • Meybeck, M. (1982), Carbon, nitrogen, and phosphorous transport by world rivers, Am. J. Sci., 282, 401450.
  • Mook, W. G., and J. Van der Plicht (1999), Reporting 14C activities and concentrations, Radiocarbon, 41, 227239.
  • Moreira-Turcq, P. F., P. Seyler, J. L. Guyot, and H. Etcheber (2003a), Characteristics of organic matter in the mixing zone of the Rio Negro and Rio Solimões of the Amazon River, Hydrol. Processes, 17(7), 13931404.
  • Moreira-Turcq, P. F., P. Seyler, J. L. Guyot, and H. Etcheber (2003b), Exportation of organic carbon from the Amazon river and its main tributaries, Hydrol. Processes, 17, 13291344.
  • Moreira-Turcq, P., J. M. Jouanneau, B. Turcq, P. Seyler, O. Weber, and J. L. Guyot (2004), Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: Insights into sedimentation rates, Palaeogeogr. Palaeoclimatol. Palaeoecol., 214, 2740.
  • Perez, M. A. P. (2008), Biogeoquimica da Varzea do Lago Grande de Curuai, Rio Amazonas, Pará, Brasil: caracterização, origem, ciclagem e destino do material orgânico e inorgânico, PhD Thesis, Universidade Federal Fluminense, Niteroi, Brazil, 240 pp.
  • Perez, M. A. P., P. Moreira-Turcq, H. Gallard, T. Allard, and M. Benedetti (2011), Dissolved organic matter dynamic in the Amazon basin: Sorption by mineral surfaces, Chem. Geol., 286, 158168.
  • Piedade, M. T., S. P. Long, and W. J. Junk (1994), Leaf and canopy CO2 uptake of a stand of Echinochloa polystachya on the Central Amazon floodplain, Oecologia, 97, 159174.
  • Quay, P. D., D. O. Wilbur, J. E. Richey, J. I. Hedges, A. H. Devol, and R. Victoria (1992), Carbon cycling in the Amazon River: Implications from the 13C compositions of particles and solutes, Limnol. Oceanogr., 37, 857871.
  • Raymond, P. A., and J. E. Bauer (2001a), Riverine export of aged terrestrial organic matter to the North Atlantic Ocean, Nature, 409, 497500.
  • Raymond, P. A., and J. E. Bauer (2001b), Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis, Org. Geochem., 32, 469485.
  • Raymond, P. A. (2005), The age of the Amazon's breadth, Nature, 436, 469470.
  • Richey, J. R., J. I. Hedges, A. H. Devol, P. D. Quay, R. Victoria, L. A. Martinelli, and B. R. Forsberg (1990), Biogeochemistry of carbon in the Amazon River, Limnol. Oceanogr., 35, 352371.
  • Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess (2002), Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2, Nature, 416, 617620.
  • Saliot, A., L. Mejanelle, P. Scribe, J. Fillaux, C. Pepe, A. Jabaud, and J. Dagaut (2001), Particulate organic carbon, sterols, fatty acids and pigments in the Amazon River system, Biogeochemistry, 53, 79103.
  • Smith, L. K., J. M. Melack, and D. E. Hammond (2003), Carbon, nitrogen and phosphorus content and 210Pb-derived burial rates in sediments of an Amazon floodplain lake, Amazoniana, 17, 413436.
  • Smith-Morrill, L. (1987), The exchange of carbon, nitrogen, and phosphorus between the sediments and water-column of an Amazon floodplain lake, Ph.D. Dissertation, University of Maryland, 209 pp.
  • Thorp, J. H., M. D. Delong, K. S. Greenwood, and A. F. Casper (1998), Isotopic analysis of three food web theories in constricted and floodplain regions of a large river, Oecologia, 117, 551563.
  • Tranvik L. J., et al. (2009), Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54(6, part 2), 22982314.
  • Vuori, K., M. Meili, and J. Sarvala (2006), Taxon-specific variation in the stable isotopic signatures (d13C and d15N) of lake phytoplankton, Freshwater Biol., 51, 807822.
  • Zocatelli, R., F. Cecanho, M. Amorim, M. Bernardes, P. Moreira-Turcq, B. Turcq, A. Sifeddine, and R. Cordeiro (2011), Uso dos fenóis da lignina no estudo da matéria orgânica na Várzea do Lago Grande de Curuái, Pará e na Lagoa do Caçó, Maranhão, Brasil, Acta Amazonica, 41 (2), 195204.