SEARCH

SEARCH BY CITATION

References

  • Algesten, G., S. Sobek, A.-K. Bergström, A. Ågren, L. J. Tranvik, and M. Jansson (2003), Role of lakes for organic carbon cycling in the boreal zone, Global Change Biol., 10, 141147.
  • Anderson, N. J., W. D. Andrea, and S. C. Fritz (2009), Holocene carbon burial by lakes in SW Greenland. Global Change Biol., 15, 25902598.
  • Balmer, M. B., and J. A. Downing (2011), Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters, 1, 125132.
  • Bergström, A.-K., and M. Jansson (2006), Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere, Global Change Biol., 12, 635643.
  • Billett, M. F., M. H. Garnett, K. J. Dinsmore, K. E. Dyson, F. Harvey, A. M. Thomson, S. Piirainen, and P. Kortelainen (2012), Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland. Biogeochemistry (published online 06 September 2011).
  • Butman, D., and P. A. Raymond (2011), Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci., 4, 839842.
  • Cebrian, J., and C. M. Duarte (1995), Plant growth-rate dependence of detrital carbon storage in ecosystems, Science, 268(5217), 16061608.
  • Ciais, Ph., M. Reichstein, N. Viovy, et al. (2005), Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437, 529533.
  • Climatological statistics in Finland 1961–1990 (1991), Supplement to the Meteorological Yearbook of Finland Vol-90, Part 1 1990. The Finnish Meteorological Institute, Helsinki.
  • Cole, J. J., and N. F. Caraco (2001), Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism, Mar. Freshw. Res., 52, 101110.
  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. L. Kortelainen, J. A. Downing, J. Middelburg, and J. M. Melack. (2007), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 171184.
  • D'Arcy, P., and R. Carignan (1997), Influence of catchment topography on water chemistry in southeasdtern Quebec Shield lakes. Can. J. Fish. Aquat. Sci., 54, 22152227.
  • del Giorgio, P. A., and R. H. Peters (1994), Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon, Limnol. Oceanogr., 39, 772787.
  • Denman, K. L., et al. (2007), Couplings Between Changes in the Climate System and Biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., p. 499587, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Dodds, W. K., and J. J. Cole (2007), Expanding the concept of trophic state in aquatic ecosystems: It's not just the autotrophs, Aquat. Sci., 69, 427439.
  • Downing, J. A. (2010), Emerging global role of small lakes and ponds: Little things mean a lot, Limnetica, 29, 923.
  • Downing, J. A., J. J. Cole, J. J. Middelburg, R. G. Striegl, C. M. Duarte, P. Kortelainen, Y. T. Prairie, and K. A. Laube (2008), Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century, Global Biogeochem. Cycles, 22, GB1018, doi: 10.1029/2006GB002854.
  • Einola, E., M. Rantakari, P. Kankaala, P. Kortelainen, A. Ojala, H. Pajunen, S. Mäkelä, and L. Arvola (2011), Carbon pools and fluxes in a chain of five boreal lakes – a dry and wet year comparison, J. Geophys. Res., 116, G03009, doi: 10.1029/2010JG001636.
  • Ekholm, P., and S. Mitikka (2006), Agricultural lakes in Finland: current water quality and trends, Environ. Monit. Assess., 116, 111135, doi:10.1007/s10661-006-7231-3.
  • Ferland, M.-E., P. A. del Giorgio, C. R. Teodoru, and Y. T. Prairie (2012), Long term C accumulation and total C stocks in boreal lakes in northern Quebec, Global Biogeochem. Cycles, 26, GB0E04, doi: 10.1029/2011GB004241.
  • Finlay, K., P. R. Leavitt, A. B. Patoine, and B. Wissel (2010), Magnitudes and controls of organic and inorganic carbon flux through a chain of hard-water lakes on the northern Great Plains, Limnol. Oceanogr., 55, 15511564.
  • Hanson, P. C., A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley (2004), A model of carbon evasion and sedimentation in temperate lakes, Global Change Biol., 10, 12851298.
  • Helliwell, R. C., M. C. Coull, J. J. L. Davies, et al. (2007), The role of catchment characteristics in determining surface water nitrogen in four upland regions in the UK, Hydrol. Earth Syst. Sci., 11, 356371.
  • Jonsson, A., M. Meili, A. Bergström, and M. Jansson (2001), Whole lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden), Limnol. Oceanogr., 46, 16911700.
  • Juutinen, S., M. Rantakari, P. Kortelainen, J. T. Huttunen, T. Larmola, J. Alm, J. Silvola, and P. J. Martikainen (2009), Methane dynamics in different boreal lake types, Biogeosci., 6, 209223.
  • Kastowski, M., M. Hinderer, and A. Vecsei (2011), Long-term carbon burial in European lakes: Analysis and estimates, Global Biogeochem. Cycles, 25, GB3019, doi:10.1029/2010GB003874.
  • Kauppi, P. E., M. Posch, and P. Hänninen (1997), Carbon reservoirs in peatlands and forests in the boreal regions of Finland, Silva Fennica, 31, 1325.
  • Khalil, M., and G. Weyhenmeyer (2009), Growing season variability of nitrate along a trophic gradient – contrasting patterns between lakes and streams, Aquat. Sci., 71, 2533.
  • Khan, S. A., R. L. Mulvaney, T. R. Ellsworth, and C. W. Boast (2007), The myth of nitrogen fertilization for soil carbon sequestration, J. Environ. Qual., 36, 18211832.
  • Kortelainen, P. (1993), Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics, Can. J. Fish. Aquat. Sci., 50, 14771483.
  • Kortelainen, P., J. Mannio, M. Forsius, J. Kämäri, and M. Verta (1989), Finnish lake survey: The role of organic and anthropogenic acidity, Water Air Soil Pollut., 46, 235249.
  • Kortelainen, P., S. Saukkonen, and T. Mattsson (1997), Leaching of nitrogen from forested catchments in Finland, Global Biogeochem. Cycles, 11, 627638.
  • Kortelainen, P., H. Pajunen, M. Rantakari, and M. Saarnisto (2004), A large carbon pool and small sink in boreal Holocene lake sediments, Global Change Biol., 10, 16481653.
  • Kortelainen, P., T. Mattsson, L. Finér, M. Ahtiainen, S. Saukkonen, and T. Sallantaus (2006a), Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland, Aquat. Sci., 68, 453468.
  • Kortelainen, P., M. Rantakari, J. T. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola, and P. J. Martikainen (2006b), Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes, Global Change Biol., 12, 15541567.
  • Laasanen, O. (1982), Freeze-up, break-up, ice thickness and surface water temperature statistics in lakes and rivers in Finland, Publications of the Water Research Institute. No 47. National Board of Waters, Helsinki, Finland.
  • Lapierre, J.-F., and P. A. del Giorgio (2012), Geographical and environmental drivers of regional differences in lake pCO2 versus DOC relationship across northern landscapes, J. Geophys. Res., 117, G03015, doi:10.1029/2012JG001945.
  • Larmola, T., J. Alm, S. Juutinen, S. Saarnio, P. J. Martikainen, and J. Silvola (2004), Floods cause large, inter-annual differences in littoral net ecosystem productivity, Limnol. Oceanogr., 49, 18961906.
  • Laudon, H., S. Köhler, and I. Buffam (2004), Seasonal TOC export from seven boreal catchments in northern Sweden, Aquat. Sci., 66, 223230.
  • Lepistö, A., P. Kortelainen, and T. Mattsson (2008), Increased organic C and N leaching in a northern boreal river basin in Finland, Global Biogeochem. Cycles 22, GB3029, doi:10.1029/2007GB003175.
  • Liski, J., A. Lehtonen, T. Palosuo, et al. (2006), Carbon accumulation in Finland's forests 1922–2004 -an estimate obtained by combination of forest inventory data with modelling of biomass litter and soil, Ann. For. Sci. 63, 687697.
  • Mack, M. C., E. A. G. Schuur, M. S. Bret-Harte, G. R. Shaver, and F. S. Chapin (2004), Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization, Nature, 431, 440443.
  • Magnani, F., M. Mencuccini, M. Borghetti, et al. (2007), The human footprint in the carbon cycle of temperate and boreal forests, Nature, 447, 848850.
  • Mattsson, T., P. Kortelainen, and A. Räike (2005), Export of DOM from boreal catchments: Impacts of land use cover and climate, Biogeochem., 76, 373394.
  • McAuliffe, C. C. (1971), GC determination of solutes by multiple phase equilibration, Chem. Technol., 1, 4651.
  • Meybeck, M. (1993), Riverine transport of atmospheric carbon: Sources, global typology and 686 budget, Water Air Soil Pollut., 70, 443463.
  • Meyer, H., C. Kaiser, C. Biasi, R. Hämmerle, O. Rusalimova, N. Lashchinsky, C. Barabyi, H. Daims, P. Barsukov, and A. Richter (2006), Soil carbon and nitrogen dynamics along a latitudinal transect in Western Siberia, Russia, Biogeochem., 81, 239252.
  • Meyers, P. A., and K. Takemura (1997), Quaternary changes in delivery and accumulation of organic matter in sediments of Lake Biwa, Japan, J. Paleolimnol., 18(3), 211218.
  • Minkkinen, K., J. Laine, N. J. Shurpali, P. Mäkiranta, J. Alm, and T. Penttilä (2007), Heterotrophic soil respiration in forestry-drained peatlands, Boreal Environ. Res., 12(2), 115126.
  • Molot, L. A., and P. J. Dillon (1996), Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere, Global Biogeochem. Cycle, 10, 483492.
  • National Board of Waters (1981), Methods of water analysis employed by the Water Administration (In Finnish with English summary), Helsinki.
  • Ojala, A., J. López Bellido, T. Tulonen, P. Kankaala, and J. Huotari (2011), Carbon gas fluxes from a brown-water and a clear-water lake in the boreal zone during a summer with extreme rain events, Limnol. Oceanogr., 56(1), 6176, doi:10.4319/lo.2011.56.1.0061.
  • Pajunen, H. (2004), Lake sediments as a store of dry matter and carbon, Report of Investigation 160, Geological Survey of Finland, Espoo.
  • Pajunen, H., L. Hämäläinen, and T. Kankainen (2000), Methods, in Carbon in Finnish Lake Sediments, edited by H. Pajunen, pp. 717, Geological Survey of Finland, Espoo.
  • Piao, S., P. Ciais, P. Friedlingstein, et al. (2008), Net carbon dioxide losses of northern ecosystems in response to autumn warming, Nature, 451, 4952.
  • Pregitzer, K. S., A. J. Burton, D. R. Zak, and A. F. Talhelm (2008), Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests, Global Change Biol., 14(1), 142153.
  • Rantakari, M., and P. Kortelainen (2005), Interannual variation and climatic regulation of the CO2 emission from large boreal lakes, Global Change Biol., 11, 13681380.
  • Rantakari, M., and P. Kortelainen (2008), Controls of total organic and inorganic carbon in randomly selected Boreal lakes in varied catchments, Biogeochem., 91, 151162.
  • Raymond, P. A., and N. H. Oh (2007), An empirical study of climatic controls on riverine C export from three major U.S. watersheds, Global Biogeochem. Cycles, 21(2), GB2022.
  • Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess (2002), Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2, Nature, 416, 617620.
  • Roehm, C. L., Y. T. Prairie, and P. A. del Giorgio (2009), The pCO2 dynamics in lakes in the boreal region of northern Quebec, Canada, Global Biogeochem. Cycles, 23, GB3013.
  • Sadro, S., and J. M. Melack (2012), The effect of an extreme rain event on the biogeochemistry and ecosystem metabolism of an oligotrophic high-elevation lake, Arct. Antarct. Alp. Res., 44(2), 222231.
  • Räike, A., P. Kortelainen, T. Mattsson, and D. N. Thomas (2012), 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea, Sci. Total Environ., 435–436, 188201.
  • Sobek, B., B. Söderbäck, S. Karslsson, E. Andrssson, and A. K. Brunberg (2006), A carbon budget of a small humic lake: An example of the importance of lakes for organic matter cycling in boreal catchments, Ambio, 35, 469475.
  • Sobek, S., L. J. Tranvik, Y. T. Prairie, P. Kortelainen, and J. J. Cole (2007), Patterns and regulations of dissolved organic carbon – an analysis of 7500 widely distributed lakes, Limnol. Oceanogr., 52, 12081219.
  • Striegl, R. G., P. Kortelainen, J. P. Chanton, K. P. Wickland, G. C. Bugna, and M. Rantakari (2001), Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt, Limnol. Oceanogr., 46 (4), 941945.
  • Tranvik, L. J., et al. (2009), Lakes and impoundments as regulators of carbon cycling and climate, Limnol. Oceanogr., 54(6, part 2), 22982314.
  • Wallenstein, M. D., S. K. McMahon, K. Shawna, and J. P. Schimel (2009), Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils, Global Change Biol., 15, 16311639.
  • Weyhenmeyer, G. A. (2008), Water chemical changes along a latitudinal gradient in relation to climate and atmospheric deposition, Clim. Chang., 88(2), 199208.
  • Weyhenmeyer, G., P. Kortelainen, S. Sobek, R. Müller, and M. Rantakari (2012), Carbon bioxide in boreal surface waters – A comparison of lakes and streams, Ecosystems (published online 07 August 2012).
  • Wickland, K. P., G. R. Aiken, K. Butler, M. M. Downblaser, R. G. M. Spencer, and R. G. Striegl (2012), Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen, Global Biogeochem. Cycles, 26, GB0E03, doi: 10.1029/2012GB004342.
  • Williamson, C. E., W. Dodds, T. Kratz, and M. A. Palmer (2008), Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes, Front. Ecol. Environ., 6, 247254.
  • Yu, Z., I. D. Campbell, C. Campbell, D. H. Vitt, G. C. Bond, and M. J. Apps (2003), Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales, Holocene, 13, 801808.