SEARCH

SEARCH BY CITATION

References

  • Baril, M. (2001), 13C in dissolved inorganic carbon from the decomposition of flooded reservoirs: Stable carbon isotope ratios, bachelor's thesis, Dep. of Earth Sci., Univ. of Waterloo, Waterloo, Ont., Canada.
  • Barros, N., J. J. Cole, J. J. Tranvik, Y. T. Prairie, D. Bastviken, V. L. M. Huszar, P. del Giorgio, and F. Roland (2011), Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude, Nat. Geosci., 4(9), 593596, doi:10.1038/ngeo1211.
  • Bastviken, D., J. J. Cole, M. L. Pace, and L. Tranvik (2004), Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cycles, 18, GB4009, doi:10.1029/2004GB002238.
  • Bastviken, D., J. J. Cole, M. L. Pace, and M. C. Van de Bogert (2008), Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions, J. Geophys. Res., 113, G02024, doi:10.1029/2007JG000608.
  • Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway, and R. J. Francey (2000), Global carbon sinks and their variability inferred from atmospheric O2 and δ13C, Science, 287(5462), 24672470, doi:10.1126/science.287.5462.2467.
  • Bergeron, Y., M. Flannigan, S. Gauthier, A. Leduc, and P. Lefort (2004), Past, current and future fire frequency in the Canadian boreal forest: Implications for sustainable forest management, Ambio, 33(6), 356360, doi:10.1579/0044-7447-33.6.356.
  • Bodaly, R. A., et al. (2004), The use of experimental reservoirs to explore the mercury and greenhouse gas impacts of hydro-electric developments: The FLUDEX experiment, Environ. Sci. Technol., 38(18), 337A352A.
  • Bodaly, R. A., W. A. Jansen, A. R. Majewski, R. J. P. Fudge, N. E. Strange, A. J. Derksen, and D. J. Green (2007), Post-impoundment time course of increased mercury concentrations in fish in hydroelectric reservoirs of northern Manitoba, Canada, Arch. Environ. Contam. Toxicol., 53(3), 379389, doi:10.1007/s00244-006-0113-4.
  • Boudreau, N. M. (2000), Soil carbon, carbon dioxide, and methane in three experimentally flooded upland boreal forest reservoirs: A δ13C inventory of sources and processes, master's thesis, Univ. of Waterloo, Waterloo, Ont., Canada.
  • Canadian Hydropower Association (2002), Hydropower: A response to Canada's climate change and air quality challenges, report, Ottawa.
  • Chanton, J. R., D. K. Powelson, and R. B. Green (2009), Methane oxidation in landfill cover soils, is a 10% default value reasonable?, J. Environ. Qual., 38(2), 654663, doi:10.2134/jeq2008.0221.
  • Chomicki, K. M. (2009), The use of stable carbon and oxygen isotopes to examine the fate of dissolved organic matter in two small, oligotrophic Canadian Shield lakes, PhD thesis, Univ. of Waterloo, Waterloo, Ont., Canada.
  • Clark, I., and P. Fritz (1997), Environmental Isotopes in Hydrology, CRC Press, Boca Raton, FL.
  • Cole, J. J., S. R. Carpenter, J. F. Kitchell, and M. L. Pace (2002), Pathways of organic carbon utilization in small lakes: Results from a whole-lake 13C addition and coupled model. Limnol. Oceanogr., 47(6), 16641675, doi:10.4319/lo.2002.47.6.1664.
  • Coplen, T. B. (2011), Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results, Rapid Commun. Mass Spectrom., 25, 25382560, doi:10.1002/rcm.5129.
  • Demarty, M., J. Bastien, A. Tremblay, R. Hesslein, and R. Gill (2009), Greenhouse gas emissions from Boreal reservoirs in Manitoba and Québec, Canada, measured with automated systems, Environ. Sci. Technol., 43(23), 89088915, doi:10.1021/es8035658.
  • Downing, J. A., Y. T. Prairie, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortaleinen, N. F. Caraco, J. M. Melack, and J. J. Middelburg (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 51(5), 23882397.
  • Duchemin, É., M. Lucotte, R. Canuel, and A. Chamberland (1995), Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region, Global Biogeochem. Cycles, 9(4), 529540.
  • Duchemin, É., M. Lucotte, R. Canuel, and N. Suomis (2006), First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break-up, Lakes Reservoirs Res. Manage., 11, 919, doi:10.1111/j.1440-1770.2005.00285.x.
  • Dyck, B. S., and J. M. Shay (1999), Biomass and carbon pool of two bogs in the Experimental Lakes Area, northwestern Ontario, Can. J. Bot., 77(2), 291304, doi:10.1139/cjb-77-2-291.
  • Ehhalt, D., et al. (2001), Atmospheric chemistry and greenhouse gases, in Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton, et al., chap. 4, pp. 239288, Cambridge Univ. Press, Cambridge, UK.
  • Falkowski, P. G., and J. A. Raven (1997), Aquatic Photosynthesis, Blackwell, Malden, Mass.
  • Ferguson, G. A. G. (2000), Sources of dissolved organic carbon in flooded uplands, bachelor's thesis, Dep. of Earth Sci., Univ. of Waterloo, Waterloo, Ont., Canada.
  • Fogel, M. L., and L. A. Cifuentes (1993), Isotope fractionation during primary production, in Organic Geochemistry, edited by H. M. Engel and S. A. Macko, pp. 7398, Plenum, New York.
  • Hall, B. D., and V. L. St. Louis (2004), Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes, Environ. Sci. Technol., 38(19), 50105021, doi:10.1021/es049800q.
  • Hall, B. D., V. L. St. Louis, K. R. Rolfhus, R. A. Bodaly, K. G. Beaty, M. J. Paterson, and K. A. Cherewyk (2005), Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in Boreal Upland Forests, Ecosystems, 8(3), 248266, doi:10.1007/s10021-003-0094-3.
  • Hecky, R. E., and R. H. Hesslein (1995), Contributions of benthic algae to lake food webs as revealed by stable isotope analysis, J. North Am. Benthol. Soc., 14(4), 631653.
  • Herczeg, A. L. (1987), A stable carbon isotope study of dissolved inorganic carbon cycling in a softwater lake, Biogeochemistry, 4(3), 231263, 10.1007/BF02187369.
  • Heubert, D. (1999), Experimental Lakes Area upland flooding experiment: Vegetation analysis, technical report, Fish. and Oceans Can., Winnipeg, MB, Canada.
  • Huttunen, J. T., et al. (2002), Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland, Global Biogeochem. Cycles, 16(1), 1003, doi:10.1029/2000GB001316.
  • Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola, and P. J. Martikainen (2003), Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52(3), 609621, doi:10.1016/S0045-6535(03)00243-1.
  • Huttunen, J. T., T. Hammar, P. Manninen, K. Servomaa, and P. J. Martikainen (2004), Potential springtime greenhouse gas emissions from a small southern boreal lake (Keihäsjärvi, Finland), Boreal Environ. Res., 9, 421427.
  • Huttunen, J. T., T. S. Väisänen, S. K. Hellsten, and P. J. Martikainen (2006), Methane fluxes at the sediment–water interface in some boreal lakes and reservoirs, Boreal Environ. Res., 11, 2734.
  • Intergovernmental Panel on Climate Change (2000), Special Report on Land Use, Land-Use Change, and Forestry, Summary for Policy Makers, Cambridge Univ. Press, Cambridge, U. K.
  • Kankaala, P., S. Taipale, H. Nykanen, and R. I. Jones (2007), Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake, J. Geophys. Res., 112, G02033, doi:10.1029/2006JG000336.
  • Kelly, C. A., et al. (1997), Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir, Environ. Sci. Technol., 31(5), 13341344, doi:10.1021/ES9604931.
  • Knox, M., P. D. Quay, and D. Wilbur (1992), Kinetic isotopic fractionation during air-water gas transfer of O2, N2, CH4, and H2, J. Geophys. Res., 97(C12), 20,33520,343.
  • Lehner, B., et al. (2011) High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494502, doi:10.1890/100125.
  • Matthews, C. J. D., V. L. St. Louis, and R. H. Hesslein (2003), Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces, Environ. Sci. Technol., 37(4), 772780, doi:10.1021/es0205838.
  • Matthews, C. J. D., E. M. Joyce, V. L. St. Louis, S. L. Schiff, J. J. Venkiteswaran, B. D. Hall, R. A. Bodaly, and K. G. Beaty (2005), Carbon dioxide and methane production in small reservoirs flooding upland boreal forest, Ecosystems, 8(3), 267285, doi:10.1007/s10021-005-0005-x.
  • Monson, K. D., and J. M. Hayes (1980), Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty-acids in Escherichia coli: Evidence regarding the coupling of fatty acid and phospholipid-synthesis, J. Biol. Chem., 255(23), 14351441.
  • Nadelhoffer, K. F., and B. Fry (1988), Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter, Soil Sci. Soc. Am. J., 52(6), 16331640.
  • Oelbermann, M., and S. L. Schiff (2008), Quantifying carbon dioxide and methane emissions and carbon dynamics from flooded boreal forest soil, J. Environ. Qual., 37(6), 20372047, doi:10.2134/jeq2008.0027.
  • Quay, P., J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, and T. Brown (1999), The isotopic composition of atmospheric methane, Global Biogeochem. Cycles, 13(2), 445461.
  • Quay, P. D., S. R. Emerson, B. M. Quay, and A. H. Devol (1986), The carbon cycle for Lake Washington—A stable isotope study, Limnol. Oceanogr., 31(3), 596611.
  • Rapalee, G., S. E. Trumbore, E. A. Davidson, J. W. Harden, and H. Veldhuis (1998), Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape, Global Biogeochem. Cycles, 12(4), 687701, doi:10.1029/98GB02336.
  • Rudd, J. W. M., and R. D. Hamilton (1975), Factors controlling rates of methane oxidation and distribution of methane oxidizers in a small stratified lake, Arch. Hydrobiol., 75(4), 522538.
  • Rudd, J. W. M., R. Harris, C. A. Kelly, and R. E. Hecky (1993), Are hydroelectric reservoirs significant sources of greenhouse gases?, Ambio, 22(4), 246248.
  • Sims, R. E. H., R. N. Schock, A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, W. Moomaw, H. B. Nimir, and B. Schlamadinger (2007), Energy supply, in Climate Change 2007: Working Group III:Mitigation of Climate Change, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by B. Metz, et al., Chapter 4, pp. 2517–322, Cambridge Univ. Press, Cambridge U. K.
  • St. Louis, V. L., C. A. Kelly, É. Duchemin, J. W. M. Rudd, and D. M. Rosenberg (2000), Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate, Bioscience, 50(9), 766775.
  • St. Louis, V. L., J. W. M. Rudd, C. A. Kelly, R. A. Bodaly, M. J. Paterson, K. G. Beaty, R. H. Hesslein, A. Heyes, and A. R. Majewski (2004), The rise and fall of mercury methylation in an experimental reservoir, Environ. Sci. Technol., 38(5), 13481358, doi:10.1021/es001924p.
  • Stocks, B. J., et al. (2002), Large forest fires in Canada, 1959–1997, J. Geophys. Res., 107(D1), 8149, doi:10.1029/2001JD000484, 2002. [Printed 108(D1), 2003.]
  • Teodoru, C. R., Y. T. Prairie, and P. A. del Giorgio (2011), Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in Northern Québec, Canada, Ecosystems, 14, 2846, 10.1007/s10021-010-9393-7.
  • Teodoru, C. R., et al. (2012), The net carbon footprint of a newly created boreal hydroelectric reservoir, Global Biogeochem. Cycles, 26, GB2016, doi:10.1029/2011GB004187.
  • Tremblay, A., M. Lambert, and C. Demers (2005), Introduction, in Greenhouse Gas Emissions—Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments, edited by A. Tremblay, et al., chap. 1, pp. 2134, Springer-Verlag, Berlin, doi:10.1007/3-540-26643-7_1.
  • Trumbore, S. E., and J. W. Harden (1997), Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area, J. Geophys. Res., 102(D24), 28, 81728, 830, doi:10.1029/97JD02231.
  • Venkiteswaran, J. J., and S. L. Schiff (2005), Methane oxidation: Isotopic enrichment factors in freshwater boreal reservoirs, Appl. Geochem., 20(4), 683690, doi:10.1016/j.apgeochem.2004.11.007.
  • Wetzel, R. G. (2001), Limnology—Lake and River Ecosystems, Academic, San Diego, Calif.
  • Whiticar, M. J. (1999), Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 161(1-3), 291314, doi:10.1016/S0009-2541(99)00092-3.
  • Whiticar, M. J., E. Faber, and M. Schoell (1986), Biogenic methane formation in marine and fresh-water environments: CO2 reduction vs. acetate fermentation—Isotope evidence, Geochim. Cosmochim. Acta, 50(5), 693709, doi:10.1016/0016-7037(86)90346-7.
  • Wisser, D., S. Frockling, E. M. Douglas, B. M. Fekete, A. H. Schumann, and C. J. Vörösmarty (2010), The significance of local water resources captured in small reservoirs for crop production—A global-scale analysis. J. Hydrol., 384(3–4), 264275, doi:10.1016/j.jhydrol.2009.07.032.