SEARCH

SEARCH BY CITATION

References

  • Arora, V., and P. Gajri (2000), Assessment of a crop growth‒water balance model for predicting maize growth and yield in a subtropical environment, Agric. Water Manage, 46(2), 157166.
  • Burchuladze, A., M. Chudy, I. Eristavi, S. Pagava, P. Povinec, A. Sivo, and G. Togonidze (1989), Anthropogenic 14C variations in atmospheric CO2 and wines, 771776.
  • Ek, M., K. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. Tarpley (2003), Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851, doi:10.1029/2002JD003296.
  • Gamnitzer, U., U. Karstens, B. Kromer, R. E. M. Neubert, H. A. J. Meijer, H. Schroeder, and I. Levin (2006), Carbon monoxide: A quantitative tracer for fossil fuel CO2?, J. Geophys. Res., 111(D22), 302, doi:10.1029/2005JD006966.
  • Godwin, H. (1962), Half‒life of radiocarbon, Nature, 195(4845), 984.
  • Goudriaan, J., and H. van Laar (1994), Modelling Potential Crop Growth Processes: Textbook With Exercises, 238, Kluwer Academic Publishers Dordrecht, The Netherlands, monograph.
  • Graven, H. D., and N. Gruber (2011), Continental‒scale enrichment of atmospheric 14CO2 from the nuclear power industry: Potential impact on the estimation of fossil fuel‒derived CO2, Atmos. Chem. Phys., 11(23), 12,33912,349, doi:10.5194/acp‒11‒12339‒2011.
  • Graven, H. D., T. P. Guilderson, and R. F. Keeling (2012), Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles, J. Geophys. Res., 117(D02), 303, doi:10.1029/2011JD016535.
  • Guérif, M., and C. Duke (1998), Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation, Eur. J. Agron., 9(2‒3), 127136.
  • Hong, S. ‒Y., Y. Noh, and J. Dudhia (2006), A new vertical diffusion package with an explicit treatment of entrainment processes, Mon Weather Rev., 134(9), 23182341.
  • Hsueh, D. Y., N. Y. Krakauer, J. T. Randerson, X. Xu, S. E. Trumbore, and J. R. Southon (2007), Regional patterns of radiocarbon and fossil fuel‒derived CO2 in surface air across North America, Geophys. Res. Lett., 34(2), L02816, doi:10.1029/2006GL027032.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40‒year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437471.
  • Keeling, C. (1978), Atmospheric carbon‒dioxide in 19th‒century, Science, 202(4372), 11091109.
  • Keeling, C., T. Whorf, M. Wahlen, and J. van der Plicht (1995), Interannual extremes in the rate of rise of atmospheric carbon‒dioxide since 1980, Nature, 375(6533), 666670.
  • Kooistra, L., A. Bergsma, B. Chuma, and S. de Bruin (2009), Development of a dynamic web mapping service for vegetation productivity using Earth observation and in situ sensors in a sensor web based approach, Sensors, 9, 23712388, doi:10.3390/s90402371.
  • LeQuere, C., et al. (2007), Saturation of the Southern Ocean CO2 sink due to recent climate change, Science, 316(5832), 17351738, doi:10.1126/science.1136188.
  • Levin, I., and U. Karstens (2007), Inferring high‒resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations, Tellus B, 59, 245250.
  • Levin, I., and C. Rodenbeck (2008), Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?Naturwissenschaften, 95(3), 203208.
  • Levin, I., K. Munnich, and W. Weiss (1980), The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere, Radiocarbon, 22(2), 379391.
  • Levin, I., B. Kromer, M. Schmidt, and H. Sartorius (2003), A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations, Geophys. Res. Lett., 30(23), 2194, doi:10.1029/2003GL018477.
  • Levin, I., et al. (2010), Observations and modelling of the global distribution and long‒term trend of atmospheric 14CO2, Tellus B, 62(1), 2646, doi:10.1111/j.1600‒0889.2009.00446.x.
  • Marland, G., T. A. Boden, and R. J. Andres (2008), Global, regional, and national fossil fuel CO2 emissions, in trends: A compendium of data on global change, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
  • Meijer, H. A. J., J. van der Plicht, J. S. Gislefoss, and R. Nijdal (1995), Comparing long‒term atmospheric 14C and 3H records near Groningen, The Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations, Radiocarbon, 37(1), 3950.
  • Meijer, H. A. J., H. Smid, E. Perez, and M. G. Keizer (1996), Isotopic characterisation of anthropogenic CO2 emissions using isotopic and radiocarbon analysis, Phys. Chem. Earth, 21(5‒6), 483487.
  • Mook, W. G., and J. van der Plicht (1999), Reporting 14C activities and concentrations, Radiocarbon, 41(3), 227239.
  • Olivier, J. G. J., and J. J. M. Berdowski (2001), Global emissions sources and sinks, in Berdowski, J., Guicherit, R. and B.J. Heij, “The Climate System”, pp. 33–78, Lisse, The Netherlands.
  • Palstra, S. W. L., U. Karstens, H. Streurman, and H. A. J. Meijer (2008),Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison, J. Geophys. Res., 113, D21305, doi:10.1029/2008JD010282.
  • Peters, W., et al. (2010), Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations, Global Change Biol., 16(4), 13171337, doi:10.1111/j.1365‒2486.2009.02078.x.
  • Pregger, T., Y. Scholz, and R. Friedrich 2007, Documentation of the anthropogenic GHG emission data for Europe provided in the frame of CarboEurope GHG and CarboEurope IPFinal Report CarboEurope‒IP.
  • Riley, W., D. Hsueh, J. Randerson, M. L. Fischer, J. G. Hatch, D. E. Pataki, W. Wang, and M. L. Goulden (2008), Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model, J. Geophys. Res., 113, G04002, doi:10.1029/2007JG000625.
  • Shibata, S., E. Kawano, and T. Nakabayashi (2005), Atmospheric 14CO2 variations in Japan during 1982–1999 based on 14C measurements of rice grains, Appl. Radiat. Isot., 63(2), 285290, doi:10.1016/j.apradiso.2005.03.011.
  • Singels, A., M. van den Berg, M. Smit, M. Jones, and R. van Antwerpen (2010), Modelling water uptake, growth and sucrose accumulation of sugarcane subjected to water stress, Field Crops Res., 117(1), 5969.
  • Skamarock, W., J. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. ‒Y. Huang, W. Wang, and J. G. Powers 2008, A description of the Advanced Research WRF Version 3, NCAR Technical Note NCAR/TN‒475+STR.
  • Stephens, B. B., et al. (2007), Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2, Science, 316(5832), 17321735, doi:10.1126/science.1137004.
  • Stuiver, M., and H. Polach (1977), Discussion: Reporting of 14C data, Radiocarbon, 19(3), 355363.
  • Suess, H. (1955), Radiocarbon concentration in modern wood, Science, 122, 415417.
  • Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247(4949), 14311438.
  • Thoning, K., and P. Tans (1989), Atmospheric carbon dioxide at mauna loa observatory. 2. Analysis of the NOAA GMCC data 1974–1985, J. Geophys. Res., 94(D6), 85498565.
  • Tolk, L. F., W. Peters, A. G. C. A. Meesters, M. Groenendijk, A. T. Vermeulen, G. J. Steeneveld, and A. J. Dolman (2009), Modelling regional scale surface fluxes, meteorology and CO2 mixing ratios for the Cabauw tower in the Netherlands, Biogeosciences, 6(10), 22652280.
  • Turnbull, J., J. Miller, S. Lehman, and P. Tans (2006), Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange, Geophys. Res. Lett., 33, L01817, doi:10.1029/2005GL024213.
  • Turnbull, J., P. Rayner, J. Miller, T. Naegler, P. Ciais, and A. Cozic (2009), On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model, J. Geophys. Res., 114(D22), 302, doi:10.1029/2009JD012308.
  • van Ittersum, M., P. Leffelaar, H. van Keulen, M. Kropff, L. Bastiaans, and J. Goudriaan (2003), On approaches and applications of the Wageningen crop models, Eur. J. Agron., 18(3‒4), 201234.
  • van Laar, H., J. Goudriaan, and H. V. Keulen (1997), SUCROS97: Simulation of Crop Growth for Potential and Water‒Limited Production Situations; as Applied to Spring Wheat, 52, vol. 14, DLO Research Institute for Agrobiology and Soil Fertility and The C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands.
  • Vay, S. A., S. C. Tyler, Y. Choi, D. R. Blake, N. J. Blake, G. W. Sachse, G. S. Diskin, and H. B. Singh (2009), Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity, Atmos. Chem. Phys., 9(14), 49734985.
  • Willmott, C. (1982), Some comments on the evaluation of model performance, Bull. Am. Meteorol. Soc., 63(11), 13091313.
  • Xevi, E., J. Gilley, and J. Feyen (1996), Comparative study of two crop yield simulation models, Agric. Water Manage., 30(2), 155173.
  • Zhang, L., W. van der Werf, W. Cao, B. Li, X. Pan, and J. Spiertz (2008), Development and validation of SUCROS‒cotton: A potential crop growth simulation model for cotton, NJAS ‒ Wageningen J. Life Sci., 56, 5983.