SEARCH

SEARCH BY CITATION

References

  • Arya, S. (1981), Parameterizing the height of the stable atmospheric boundary layer, J. Appl. Meteorol., 20, 11921202.
  • Baker, J. M., and T. J. Griffis (2005), Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques, Agr. Forest. Meteorol., 128, 163177.
  • Bavin, T., T. Griffis, J. Baker, and R. Venterea (2009), Impacts of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem, Agric. Ecosyst. Environ., 134, 234242.
  • Beaulieu, J. J., et al. (2011), Nitrous oxide emission from denitrification in stream and river networks, Proc. Natl. Acad. Sci. USA., 108(1), 214219, doi:10.1073/pnas.1011464108.
  • Beaulieu, J. J., C. P. Arango, S. K. Hamilton, and J. L. Tank (2008), The production and emission of nitrous oxide from headwater streams in the Midwestern United States, Global Change Biol., 14(4), 878894, doi:10.1111/j.1365-2486.2007.01485.x.
  • Beirman, P., C. Rosen, R. Venterea, and J. Lamb (2012), Survey of nitrogen fertilizer use on corn in Minnesota, Agr. Syst., 109, 4352.
  • Betts, A. (2000), Idealized model for equilibrium boundary layer over land, J. Hydrometeorol., 1, 507523.
  • Betts, A. K., B. Helliker, and J. Berry (2004), Coupling between CO2, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land rid b-8211-2009, J. Geophys. Res., 109, D18103, doi:10.1029/2003JD004420.
  • Bouwman, A., K. van der Hoek, and J. Olivier (1995), Uncertainties in the global source distribution of nitrous oxide, J. Geophys. Res., 100(D2), 27852800.
  • Cavigelli, M. A., and T. B. Parkin (2012), Cropland management contribution to greenhouse gas flux: Eastern and central U.S., in Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate, edited by M. Liebig, R. Follett, and A. Franzluebbers, pp. 129166, Academic Press, Waltham, Mass.
  • Chen, Y., S. Tessier, A. F. Mackenzie, and M. R. Laverdiere (1995), Nitrous-oxide emission from an agricultural soil subjected to different freeze-thaw cycles, Agric. Ecosyst. Environ., 55(2), 123128.
  • Corazza, M., et al. (2011), Inverse modelling of European N2O emissions: Assimilating observations from different networks, Atmos. Chem. Phys., 11(5), 23812398, doi:10.5194/acp-11-2381-2011.
  • Crutzen, P., A. Mosier, K. Smith, and W. Winiwarter (2008), N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuel, Atmos. Chem. Phys., 8, 389395.
  • De Klein, C., R. S. A. Novoa, S. Ogle, K. A. Smith, P. Rochette, T. C. Wirth, B. G. McConkey, A. Mosier, and K. Rypdal (2006), N2O emissions from managed soils, and CO2 emissions from lime and urea application, in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 4: Agriculture, Forestry and Other Land Use, edited by H. S. Eggleston et al., pp. 11.1111.54, Institute for Global Environmental Strategies (IGES), Intergovernmental Panel on Climate Change (IPPC), Kanagawa, Japan.
  • Del Grosso, S., T. Wirth, S. Ogle, and W. Parton (2008), Estimating agricultural nitrous oxide emissions, EOS T. Am. Geophys. Un., 89, 529540.
  • Denmead, O., M. Raupach, F. Dunin, H. Cleugh, and R. Leuning (1996), Boundary layer budgets for regional estimates of scalar fluxes, Glob. Change Biol., 2(3), 255264, doi:10.1111/j.1365-2486.1996.tb00077.x.
  • Desai, A. R., B. R. Helliker, P. R. Moorcroft, A. E. Andrews, and J. A. Berry (2010), Climatic controls of interannual variability in regional carbon fluxes from top-down and bottom-up perspectives rid b-8211-2009, J. Geophys. Res-Biogeo., 115, G02011, doi:10.1029/2009JG001122.
  • Donner, S., and C. Kucharik (2008), Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River, Proc. Natl. Acad. Sci. USA., 105, 45134518.
  • Erisman, J., M. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter (2008), How a century of ammonia synthesis changed the world, Nat. Geosci., 1, 636639.
  • Eugster, W., and F. Siegrist (2000), The influence of noctural CO2 advection on CO2 flux measurements, Basic Appl. Ecol., 1, 177188.
  • Fassbinder, J., T. Griffis, and J. Baker (2012), Evaluation of carbon isotope flux partitioning theory under simplified and controlled environmental conditions, Agr. Forest Meteorol., 153, 154164.
  • Fassbinder, J., N. Schultz, J. Baker, and T. Griffis (2013), Automated, low-power chamber system for measuring N2O emissions, J. Environ. Qual., 42, 606614.
  • Gregorich, E., P. Rochette, A. V. den Bygaart, and D. Angers (2005), Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada, Soil Till. Res., 83, 5372.
  • Griffis, T., J. Baker, S. Sargent, M. Erickson, J. Corcoran, M. Chen, and K. Billmark (2010), Influence of C4 vegetation on 13CO2 discrimination and isoforcing in the upper Midwest, United States, Global Biogeochem. Cycles, 24, GB4006, doi:10.1029/2009GB003594.
  • Groffman, P. M., K. Butterbach-Bahl, R. W. Fulweiler, A. J. Gold, J. L. Morse, E. K. Stander, C. Tague, C. Tonitto, and P. Vidon (2009), Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models, Biogeochemistry, 93(1-2), 4977.
  • Helliker, B. R., et al. (2004), Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower, J. Geophys. Res., 109, D20106, doi:10.1029/2004JD004532.
  • Hirsch, A. I., A. M. Michalak, L. M. Bruhwiler, W. Peters, E. J. Dlugokencky, and P. P. Tans (2006), Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001 rid b-8305-2008, Global Biogeochem. Cycles, 20(1), GB1008, doi:10.1029/2004GB002443.
  • http://edgar.jrc.ec.europa.eu, (2011), Emission database for global atmospheric research (EDGAR), release version 4.2. http://edgar.jrc.ec.europa.eu, 2011, Tech. rep., European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL).
  • Kort, E. A., et al. (2008), Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations, Geophys. Res. Lett., 35, L18808, doi:10.1029/2008GL034031.
  • Lin, J., C. Gerbig, S. Wofsy, A. Andrews, B. Daube, K. Davis, and C. Grainger (2003), A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res., 108(D16), doi:10.1029/2002JD003161.
  • Marschner, F., (1974), The original vegetation of Minnesota (redraft of the original 1930 edition), Tech. rep., U.S. Department of Agriculture, Forest Service. North Central Forest Experiment Station, St. Paul, MN, USA.
  • Miles, N. L., S. J. Richardson, K. J. Davis, T. Lauvaux, A. E. Andrews, T. O. West, V. Bandaru, and E. R. Crosson (2012), Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the U.S. upper Midwest, J. Geophys. Res-Biogeo., 117, G01019, doi:10.1029/2011JG001781.
  • Millar, N., G. Robertson, P. Grace, R. Gehl, and J. Hoben (2010), Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (maize) production: An emissions reduction protocol for US Midwest agriculture, Mitigation and Adaptation Strategies for Global Change, 15, 185204.
  • Miller, S. M., et al. (2012), Regional sources of nitrous oxide over the United States: Seasonal variation and spatial distribution, J. Geophys. Res., 117, D06310, doi:10.1029/2011JD016951.
  • Mosier, A., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. van Cleemput (1998), Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC Guidelines for National Greenhouse Gas Inventory Methodology, Nutr. Cycling Agroecosyst., 52(2-3), 225248.
  • Muller, C., C. Kammann, J. C. G. Ottow, and H. J. Jager (2003), Nitrous oxide emission from frozen grassland soil and during thawing periods, J. Plant Nutr. Soil Sci, 166(1), 4653.
  • Outram, F., and K. Hiscock (2012), Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: A significant contribution to agricultural greenhouse gas budgets? Environ. Sci. and Technol., 46, 81568163.
  • Pattey, E., I. Strachan, R. Desjardins, and J. Massheder (2002), Measuring nightime CO2 flux over terrestrial ecosystems using eddy covariance and nocturnal boundary layer methods, Agric. For. Meteorol., 113, 145158.
  • Peterson, B., et al. (2001), Control of nitrogen export from watersheds by headwater streams, Science, 292(5514), 8690, doi:10.1126/science.1056874.
  • Robertson, G., E. Paul, and R. Harwood (2000), Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere, Science, 289, 19221925.
  • Rochette, P., and N. Eriksen-Hamel (2008), Chamber measurements of soil nitrous oxide flux: Are absolute values reliable? Soil Sci. Soc. Am. J., 72, 331342.
  • Rover, M., O. Heinemeyer, and E. Kaiser (1998), Microbial induced nitrous oxide emissions from an arable soil during winter, Soil Biol. Biochem., 30(14), 18591865.
  • Smith, K., and K. Dobbie (2001), The impact of sampling frequency and sampling times on chamber-based measurements of N2O emissions from fertilized soils, Global Change Biology, 7, 933945.
  • Smith, K., A. Mosier, P. Crutzen, and W. Winiwarter (2012), The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate, Philos. Trans. R. Soc. London, Ser. B., 367, 11691174.
  • Stehfest, E., and L. Bouwman (2006), N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions, Nutr. Cycling Agroecosyst., 74, 207228.
  • USDA (1987), Farm drainage in the United States, Tech. rep., United States Department of Agriculture Miscellaneous Publication 1455.
  • USDA-NASS (2013), Corn: Acreage, Yield, and Production, by County and District, Minnesota, 2011–12, United States Department of Agriculture-National Agricultural Statistics Service,Washington D. C.
  • Wagner-Riddle, C., and G. W. Thurtell (1998), Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management practices, Nutrient Cycling in Agroecosystems, 52(2-3), 151163.
  • Wagner-Riddle, C., A. Furon, N. L. Mclaughlin, I. Lee, J. Barbeau, S. Jayasundara, G. Parkin, P. Von Bertoldi, and J. Warland (2007), Intensive measurement of nitrous oxide emissions from a corn-soybean-wheat rotation under two contrasting management systems over 5 years, Global Change Biol., 13(8), 17221736, doi:10.1111/j.1365-2486.2007.01388.x.
  • Werle, P., R. Mucke, and F. Slemr (1993), The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS), Appl. Phys. B-Photophysics and Laser Chem., 57, 131139.
  • Williams, I., W. Riley, M. Torn, J. Berry, and S. Biraud (2011), Using boundary layer equilibrium to reduce uncertainties in transport models and CO2 flux inversions, Atmos. Chem. Phys., 11, 96319641.
  • Zhang, X., X. Lee, T. Griffis, J. Baker, M. Erickson, N. Hu, and W. Xiao (2013), The influence of plants on atmospheric methane in an agriculture-dominated landscape, Int. J. Biometeorol., doi:10.1007/s00484-013-00662-y.