SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. A. Stegun (1972), Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series 55, 1046 pp., National Bureau of Standards, Washington, D.C.
  • Aita, M. N., Y. Yamanaka, and M. J. Kishi (2007), Interdecadal variation of the lower trophic ecosystem in the North Pacific between 1948 and 2002, in a 3-D implementation of the NEMURO model, Ecol. Modeling., 202(1-2), 8194, doi:10.1016/j.ecolmodel.2006.07.045.
  • Antoine, D., J.-M. Andre, and A. Morel (1996), Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cycles, 10, 5769.
  • Behrenfeld, M. J., and P. G. Falkowski (1997), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 120.
  • Behrenfeld, M. J., E. Boss, D. A. Siegel, and D. M. Shea (2005), Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cycles, 19, GB1006, doi:10.1029/2004GB002299.
  • Berger, W. H., K. Fischer, C. Lai, and G. Wu (1987), Oceanic primary productivity and organic carbon flux, Part 1, Overview and maps of primary production and export, Scripps Inst. Oceanogr., 87-30, 167.
  • Berry, D. A., and B. W. Lindgren (1990), Statistics: Theory and methods. Thomson Brooks/Cole.
  • Bissinger, J. E., D. J. S. Montagnes, J. Sharples, and D. Atkinson (2008), Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression, Limnol. Oceanogr., 53, 487493.
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone (2004), Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.
  • Buitenhuis, E. T., and R. J. Geider (2010), A model of phytoplankton acclimation to iron-light colimitation, Limnol. Oceanogr., 55, 714724.
  • Buitenhuis, E. T., P. van der Wal, and H. J. W. de Baar (2001), Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation, Global Biogeochem. Cycles, 15, 577587.
  • Buitenhuis, E. T., C. Le Quéré, O. Aumont, G. Beaugrand, A. Bunker, A. Hirst, T. Ikeda, T. O'Brien, S. Piontkovski, and D. Straile (2006), Biogeochemical fluxes through mesozooplankton, Global Biogeochem. Cycles, 20, GB2003, doi:10.1029/2005GB002511.
  • Buitenhuis, E. T., T. Pangerc, D. Franklin, C. Le Quéré, and G. Malin (2008), Growth rates of six coccolithophorid strains as a function of temperature, Limnol. Oceanogr., 53(3), 11811185.
  • Buitenhuis, E., R. Rivkin, S. Sailley, and C. Le Quéré (2010), Biogeochemical fluxes through microzooplankton, Global Biogeochem. Cycles, 24, GB4015, doi:10.1029/2009GB003601.
  • Buitenhuis, E. T., W. K. W. Li, M. W. Lomas, D. M. Karl, M. R. Landry, and S. Jacquet (2012), Picoheterotroph (Bacteria and Archaea) biomass distribution in the global ocean, Earth Syst. Sci. Data, 4, 101106, doi:10.5194/essd-4-101-2012.
  • Calbet, A. (2001), Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems, Limnol. Oceanogr., 46, 18241830.
  • Calbet, A., and M. R. Landry (2004), Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems, Limnol. Oceanogr., 49, 5157.
  • da Cunha, L. C., C. Le Quéré, E. T. Buitenhuis, X. Giraud, and W. Ludwig (2007), Potential impact of changes in river nutrient supply on global ocean biogeochemistry, Global Biogeochem. Cycles, 21, GB4007, doi:10.1029/2006GB002718.
  • Denman, K. L., et al. (2007), Couplings between changes in the climate system and biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, edited by S. Solomon et al., pp. 499587, Cambridge University Press, Cambridge, U.K.
  • Donaldson, T. S. (1968), Robustness of the F-test to errors of both kinds and the correlation between the numerator and denominator of the F-ratio, J. Am. Statist. Ass., 60, 660676.
  • Droop, M. R. (1974), The nutrient status of algal cells in continuous culture, J. Mar. Biol. Ass. UK, 54, 825855.
  • Eppley, R. W. (1972), Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 10631085.
  • Eppley, R. W., and B. J. Peterson(1979), Particulate organic-matter flux and planktonic new production in the deep ocean, Nature, 282, 677680, doi:10.1038/282677a0.
  • Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski (1998), Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281, 237240.
  • Friedrichs, M. A. M., et al. (2009), Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean, J. Mar. Sys., 76, 113133.
  • Gaspar, P., Y. Gregoris, and J. M. Lefèvre (1990), A simple eddy kinetic energy model for simulations of the oceanic vertical mixing : Tests at station Papa and long-term upper ocean study site, J. Geophys. Res., 95(16), 179193.
  • Geider, R. J., H. L. MacIntyre, and T. M. Kana (1997), Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation and temperature, Mar. Ecol. Progr. Ser., 148, 187200.
  • Gent, P. R., and J. C. McWilliams (1990), Isopycnal mixing in the ocean circulation models, J. Phys. Oceanogr., 20, 150155.
  • Gessner, F. (1957), Hydrobotanik, II. Stoffhaushalt, 638 pp., Deutscher Verlag der Wissenschaften, Berlin.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437471.
  • Koblentz-Mishke, O. J. L., V. V. Vollcovinsky, and J. G. Kabanova (1970), Plankton primary production of the world ocean, in Scientific Exploration of the South Pacific, edited by W. S. Wooster, pp. 83193, National Academy of Sciences, Washington. D.C.
  • Le Quéré, C., et al. (2005), Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Chang. Biol., 11, 20161040, doi:10.1111/j.1365-2486.2005.001004.x.
  • Le Quéré, C., et al. (2007), Saturation of the Southern Ocean CO2 sink due to recent climate change, Science, 316, 17351738, doi:10.1126/science.1136188.
  • Lee, K. (2001), Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon, Limnol. Oceanogr., 46, 12871297.
  • Litchman, E., C. A. Klausmeier, O. M. Schofield, and P. G. Falkowski (2007), The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level, Ecol. Lett., 10, 11701181.
  • Longhurst, A., S. Sathyendranath, T. Platt, and C. Caverhill (1995), An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 12451271.
  • Madec, G. (2008), NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, http://www.nemo-ocean.eu/content/download/21612/97924/file/NEMO_book_3_4.pdf.
  • Manizza, M. (2006), Modelling phytoplankton-light feedback and its biogeochemical implications, PhD thesis, University of East Anglia. http://lgmacweb.env.uea.ac.uk/green_ocean/publications/Manizza_PhD_thesis_2006.pdf.
  • Manizza, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis (2008), Ocean biogeochemical response to phytoplankton-light feedback in a global model, J. Geophys. Res., 113, C10010, doi:10.1029/2007JC004478.
  • Marra, J. (2009), Net and gross productivity: Weighting in with 14C, Aquat. Microb. Ecol., 56, 123131.
  • Mélin, F. (2003), Potentiel de la télédétection pour l'analyse des propriétés optiques du système océan-atmosphère et application à l'estimation de la photosynthèse phytoplanctonique, PhD thesis Université Toulouse III.
  • Milutinovic, S. and L. Bertino (2011), Assessment and propagation of uncertainties in input tems through an ocean-color-based model of primary production, Rem. Sens. Env., 115, 19061917, doi:10.1016/j.rse.2011.03.013.
  • Nagata, T. (2000), Production mechanisms of dissolved organic matter, in Microbial Ecology of the Ocean, edited by D. L. Kirchmann, Wiley-Liss, New York, USA.
  • Platt, T. and J. J. V. Subba Rao (1975), Primary production of marine microphytes, in Photosynthesis and Productivity in Different Environments, edited by J. P. Cooper, pp. 249280, Cambridge University Press, Cambridge, U.K.
  • Ploug, H., M. H. Iversen, M. Koski, and E. T. Buitenhuis (2008), Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite, Limnol. Oceanogr., 53, 469476.
  • Prentice, I. C., G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, F. J. Jaramillo, H. S. Kheshgi, C. Le Quere, R. J. Scholes, and D. W. R. Wallace (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change, edited by J. T. Houghton et al., pp. 185237, Cambridge University Press, Cambridge, U.K.
  • Riley, G.A. (1939), Plankton studies. II. The western North Atlantic, May-June, 1939, Mar. Res., 2, 145162.
  • Roullet, G., and G. Madec (2000), Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models, J. Geophys. Res., 105(C10), 23,92723,942.
  • Saba, V. S., et al. (2010) The challenges of modeling marine primary productivity through multidecadal climate shifts: A case study at BATS and HOT, Global Biogeochem. Cycles, 24, GB3020, doi:10.1029/2009GB003655.
  • Schlitzer, R. (2004), Export production in the equatorial and north Pacific derived from dissolved oxygen, nutrient and carbon data, J. Oceanogr., 60, 5362.
  • Shigemitsu, M., T. Okunishi, J. Nishioka, H. Sumata, T. Hashioka, M. N. Aita, S. L. Smith, N. Yoshie, N. Okada, and Y. Yamanaka (2012), Development of a one-dimensional ecosystem model including the iron cycle applied to the Oyashio region, western subarctic Pacific, J. Geophys. Res., 117, C06021, doi:10.1029/2011JC007689.
  • Steemann Nielsen, E. (1952), The use of radioactive carbon (C14) for measuring organic production in the sea, J. Cons. Int. Explor. Mer., 18, 117140.
  • Steeman Nielsen, E., and E. A. Jensen (1957), The autotrophic production of organic matter in the oceans, Calathea Rep., 1, 49124.
  • Sunda, W. G., and S. A. Huntsman (1995), Iron uptake and growth limitation in oceanic and coastal phytoplankton, Mar. Chem., 50, 189206.
  • Taghon, G. L., A. R. M. Nowell, and P. A. Jumars (1984), Transport and breakdown of fecal pellets: Biological and sedimentological consequences, Limnol. Oceanogr., 29, 6472.
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere (2005), On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model, Ocean Model., 8, 175201.
  • Westberry, T., M. J. Behrenfeld, D. A. Siegel, and E. Boss (2008), Carbon based primary productivity modeling with vertically resolved photoacclimation, Global Biogeochem. Cycles 22, GB2024, doi:10.1029/2007GB003078.
  • Whitman, W. B., D. C. Coleman, and W. J. Wiebe (1998), Prokaryotes: The unseen majority, Proc. Nat. Acad. Sci. U.S.A., 95, 65786583.