SEARCH

SEARCH BY CITATION

References

  • Alvarez-Aviles, L., W. R. Simpson, T. A. Douglas, M. Sturm, D. Perovich, and F. Domine (2008), Frost flower chemical composition during growth and its implications for aerosol production and bromine activation, J. Geophys. Res., 113, D21304, doi:10.1029/2008JD010277.
  • Barbante, C., et al. (2004), Historical record of European emissions of heavy metals to the atmosphere since the 1650s from alpine snow/snow cores drilled near Monte Rosa, Environ. Sci. Technol., 38, 40854090.
  • Boutron, C. F., and C. C. Patterson (1986), Lead concentration changes in Antarctic ice during the Wisconsin/Holocene transition, Nature, 323, 222225.
  • Candelone, J. P., S. Hong, and C. F. Boutron (1994), An improved method for decontaminating polar snow and ice cores for heavy metals analysis, Anal. Chim. Acta, 299, 916.
  • Castellano, E., S. Becagli, M. Hansson, M. Hutterli, J. R. Petit, M. R. Rampino, M. Severi, J. P. Steffensen, R. Traversi, and R. Udisti (2005), Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core, J. Geophys. Res., 110, D06114, doi:10.1029/2004JD005259.
  • Cloy, J. M., J. G. Farmer, M. C. Graham, and A. B. Mackenzie (2009), Retention of As and Sb in ombrotrophic peat bogs: Records of As, Sb and Pb deposition at four Scottish sites, Environ. Sci. Technol., 43, 17561762.
  • Domine, F., R. Sparapani, A. Ianniello, and H. J. Beine (2004), The origin of sea salt in snow on Arctic sea ice and coastal regions, Atmos. Chem. Phys., 4, 22592271.
  • Douglas, T. A., M. Sturm, W. R. Simpson, J. D. Blum, L. Alvarez-Aviles, G. J. Keeler, D. K. Perovich, A. Biswas, and K. Johnson (2008), Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic, Environ. Sci. Technol., 42, 15421551.
  • Elias, T., A. J. Sutton, J. B. Stokes, and T. J. Casadevall (1998), Sulfur dioxide emission rates of Kilauea Volcano, USGS Open-File Report Number, 1979–1997, 98462.
  • EPICA community members (2004), Eight glacial cycles from an Antarctic ice core, Nature, 429, 623628.
  • Fischer, H., et al. (2007), Reconstruction of millemmial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica, Earth Planet. Sci. Lett., 260, 340354.
  • Gabrielli, P., et al. (2004), Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice, Nature, 432, 10111014.
  • Gabrielli, P., C. Barbante, C. F. Boutron, G. Cozzi, V. GAspari, F. Planchon, C. Ferrari, C. Turetta, S. Hong, and P. Cescon (2005a), Variations in atmospheric trace elements in Dome C (East Antarctica) ice over the last two climatic cycles, Atmos. Environ., 39, 64206429.
  • Gabrielli, P., et al. (2005b), Trace elements in Vostok Antarctic ice during the last four climatic cycles, Earth Planet. Sci. Lett., 234, 249259.
  • Gabrielli, P., et al. (2006), A climatic control on the accretion of meteoric and super-chondritic iridium-platinum to the Antarctic ice cap, Earth Planet. Sci. Lett., 250, 459469.
  • Gélinas, Y., M. Lucott, and J.–P. Schmit (2000), History of the atmospheric deposition of major and trace elements in the industrialized St. Lawrence Valley, Quebec, Canada, Atmos. Environ., 34, 17951810.
  • Grahn, E., S. Karlsson, U. Karlsson, and A. Düker (2006), Historical pollution of seldom monitored trace elements in Sweden-Part B: Sediment analysis of silver, antimony, thallium and indium, J. Environ. Monit., 8, 732744.
  • Hinkley, T., P. J. Lamothe, S. A. Wilson, D. L. Finnegan, and T. M. Gerlach (1999), Metal emission from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes, Earth Planet. Sci. Lett., 170, 315325.
  • Hong, S., J. P. Candelone, C. Turetta, and C. F. Boutron (1996), Changes in natural lead, copper, zinc and cadmium concentrations in central Greenland ice from 8250 to 149,100 years ago: Their association with climatic changes and resultant variations of dominant source contribution, Earth Planet. Sci. Lett., 143, 233244.
  • Hong, S., Y. Kim, C. F. Boutron, C. Ferrari, J. R. Petit, C. Barbante, K. Rosman, and V. Y. Lipenkov (2003), Climate-related variations in lead concentrations and sources in Vostok Antarctic ice from 65,000 to 240,000 years BP, Geophys. Res. Lett., 30(22), 2138, doi:10.1029/2003GL018411.
  • Hong, S., C. F. Boutron, P. Gabrielli, C. Barbante, C. P. Ferrari, J. R. Petit, K. Lee, and V. Y. Lipenkov (2004), Past natural changes in Cu, Zn and Cd in Vostok Antarctic ice dated back to the penultimate interglacial period, Geophys. Res. Lett., 31, L20111, doi:10.1029/2004GL021075.
  • Hong, S., et al. (2005), Glacial-interglacial changes in the occurence of Pb, Cd, Cu and Zn in Vostok Antarctic ice from 240,000 to 410,000 years BP, J. Environ. Monit., 7, 13261331.
  • Hong, S., K. Lee, S. Hou, S. D. Hur, J. Ren, L. J. Burn, K. J. R. Rosman, C. Barbante, and C. F. Boutron (2009), An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas, Environ. Sci. Technol., 43, 80608065.
  • Hong, S., T.–O. Soyol-Erdene, H. J. Hwang, S. B. Hong, S. D. Hur, and H. Motoyama (2012), Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the Antarctic snow, Environ. Sci. Technol., 46, 11,55011,557.
  • Hunter, K. A. (1997), Chemistry of the sea-surface microlayer, in The Sea Surface and Global Change, edited by P. S. Liss and R. A. Duce, pp. 287319, Cambridge University Press, Cambridge.
  • Jouzel, J., et al. (2007), Orbital and millennial Antarctic climate variability over the last 800,000 years, Science, 317, 793796.
  • Kaspari, S., P. A. Mayewski, D. A. Dixon, S. B. Sneed, and M. J. Handley (2005), Sources and transport pathways of marine aerosol species into West Antarctica, Ann. Glaciol., 41, 19.
  • Kellerhals, T., L. Tobler, S. Brütsch, M. Sigl, L. Wacker, H. Gäggeler, and M. Schwikowski (2010), Thallium as a tracer for preindustrial volcanic eruptions in an ice core record from Illimani, Bolivia, Environ. Sci. Technol., 44, 888893.
  • Krachler, M., J. Zheng, D. Fisher, and W. Shotyk (2008a), Atmospheric inputs of Ag and Tl to the Arctic: Comparison of a high resolution snow pit (AD 1994–2004) with a firn (AD 1860–1996) and an ice core (previous 16,000 yr), Sci. Total Environ., 399, 7889.
  • Krachler, M., J. Zheng, D. Fisher, and W. Shotyk (2008b), Atmospheric Sb in the Arctic during the past 16,000 years: Responses to climate change and human impacts, Global Biogeochem. Cycles, 22, GB1015, doi:10.1029/2007GB002998.
  • Lambert, F., B. Delmonte, J. R. Petit, M. Bigler, P. R. Kaufmann, M. A. Hutterli, T. F. Stocker, U. Ruth, J. P. Steffensen, and V. Maggi (2008), Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core, Nature, 452, 616619.
  • Li, Y.-H. (1991), Distribution patterns of the elements in the ocean: A synthesis, Geochim. Cosmochim. Acta, 55, 32233240.
  • Lisiecki, L. E., and M. E. A. Raymo (2005), Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.
  • Lüthi, D., et al. (2008), High-resolution carbon dioxide concentration record 650,000-800,000 years before present, Nature, 453, 379382.
  • Marteel, A., et al. (2008), Changes in atmospheric heavy metals and metalloids in Dome C (East Antarctica) ice back to 672.0 kyr BP (Marine Isotopic Stages 16.2), Earth Planet. Sci. Lett., 272, 579590.
  • Marteel, A., et al. (2009), Climate-related variations in crustal trace elements in Dome C (East Antarctica) ice during the past 672 kyr, Clim. Change, 92, 191211.
  • Mather, T. A., et al. (2012), Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kilauea volcano, Hawaii, Geochim. Cosmochim. Acta, 83, 292323.
  • McConnell, J., and R. Edwards (2008), Coal burning leaves toxic heavy metal legacy in the Arctic, Proc. Natl. Acad. Sci. U. S. A., 105, 12,14012,144.
  • Nriagu, J. O. (1989), A global assessment of natural sources of atmospheric trace metals, Nature, 338, 4749.
  • Olmez, I., D. L. Finnegan, and W. H. Zoller (1986), Iridium emissions from Kilauea volcano, J. Geophys. Res., 91, 653663.
  • Parrenin, F., et al. (2007), The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485497.
  • Patterson, C. C., and D. M. Settle (1987), Magnitude of lead flux to the atmosphere from volcanoes [and erratum 52 (1988) 245], Geochim. Cosmochim. Acta, 51, 675681.
  • Peter, A. L., and T. Viraraghavan (2005), Thallium: A review of public and environmental concern, Environ. Int., 31, 493501.
  • Rankin, A. M., and E. W. Wolff (2003), A year-long record of size-segregated aerosol composition at Halley, Antarctica, J. Geophys. Res., 108(D24), 4775, doi:10.1029/2003JD003993.
  • Rankin, A. M., E. W. Wolff, and S. Martin (2002), Frost flowers: Implications for tropospheric chemistry and ice core interpretation, J. Geophys. Res., 107(D23), 4683, doi:10.1029/2002JD002492.
  • Rodushkin, I., P. Nordlund, E. Engström, and D. C. Baxter (2005), Improved multi-elemental analyses by inductively coupled plasmasector field mass spectrometry through methane addition to the plasma, J. Anal. At. Spectrom., 20, 12501255.
  • Shotyk, W., and M. Krachler (2004), Atmospheric deposition of silver and thallium since 12,370 14C years BP recorded by a Swiss peat bog profile, and comparison with lead and cadmium, J. Environ. Monit., 6, 427433.
  • Shotyk, W., A. K. Cheburkin, P. G. Appleby, A. Fankhauser, and J. D. Kramers (1996), Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland, Earth Planet. Sci. Lett., 145, E1E7.
  • Shtangeeva, I., R. Bali, and A. Harris (2011), Bioavailability and toxicity of antimony, J. Geochem. Explor., 110, 4045.
  • Siggaard-Andersen, M.-L., P. Gabrielli, J. P. Steffensen, T. Strømfeldt, C. Barbante, C. Boutron, H. Fischer, and H. Miller (2007), Soluble and insoluble lithium dust in the EPICA Dome C ice core‒Implications for changes of the East Antarctic dust provenance during the recent glacial-interglacial transition, Earth Planet. Sci. Lett., 258, 3243.
  • Soyol-Erdene, T.-O., Y. Huh, S. Hong, H. J. Hwang, and S. D. Hur (2011), Quantification of ultra-trace levels of Pt, Ir and Rh in polar snow and ice using ICP-SFMS coupled with a pre-concentration and desolvation nebulization system, Bull. Korean Chem. Soc., 32, 21052108.
  • Van de Velde, K., C. Ferrari, C. Barbante, L. Moret, T. Bellomi, S. Hong, and C. Boutron (1999), A 200 year record of atmospheric cobalt, chromium, molybdenum, and antimony in high altitude alpine firn and ice, Environ. Sci. Technol., 33, 34953501.
  • Wedepohl, K. H. (1995), The composition of the continental crust, Geochim. Cosmochim. Acta, 59, 12171232.
  • Wolff, E. W., A. M. Rankin, and R. Röthlisberger (2003), An ice core indicator of Antarctic sea ice production?, Geophys. Res. Lett., 30(22), 2158, doi:10.1029/2003GL018454.
  • Wolff, E. W., et al. (2006), Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles, Nature, 440, 491496.
  • Wolff, E. W., et al. (2010), Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core, Quat. Sci. Rev., 29, 285295.