• Open Access

Deletion at chromosome arm 9p in relation to BRAF/NRAS mutations and prognostic significance for primary melanoma

Authors

  • Caroline Conway,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Samantha Beswick,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Faye Elliott,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Yu-Mei Chang,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Juliette Randerson-Moor,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Mark Harland,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Paul Affleck,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Jerry Marsden,

    1. Department of Dermatology, University Hospital Birmingham NHS Foundation Trust, UK
    Search for more papers by this author
  • D. Scott Sanders,

    1. Department of Histopathology, Coventry and Warwickshire Pathology, Lakin Road, Warwick, UK
    Search for more papers by this author
  • Andy Boon,

    1. Department of Histopathology, Leeds Teaching Hospitals NHS Trust, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Margaret A. Knowles,

    1. Section of Experimental Oncology, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • D. Timothy Bishop,

    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    Search for more papers by this author
  • Julia A. Newton-Bishop

    Corresponding author
    1. Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
    • Professor of Dermatology, Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
    Search for more papers by this author

Abstract

We report an investigation of gene dosage at 9p21.3 and mutations in BRAF and NRAS, as predictors of relapse and histological markers of poor melanoma prognosis. Formalin-fixed primary melanomas from 74 relapsed and 42 nonrelapsed patients were sequenced for common BRAF and NRAS mutations (N = 71 results) and gene dosage at 9p21.3 including the genes CDKN2A (which encodes CDKN2A and P14ARF), CDKN2B (CDKN2B), and MTAP was measured using multiplexed ligation-dependant probe amplification (MLPA), (N = 75 results). BRAF/NRAS mutations were detected in 77% of relapsers and 58% of nonrelapsers (Fisher's exact P = 0.17), and did not predict ulceration or mitotic rate. There was no relationship between BRAF/NRAS mutations and gene dosage at 9p21.3. Reduced gene dosage at MTAP showed a borderline association with BRAF mutation (P = 0.04) and reduced gene dosage at the interferon gene cluster was borderline associated with wild type NRAS (P = 0.05). Reduced gene dosage in the CDKN2A regions coding for CDKN2A was associated with an increased risk of relapse (P = 0.03). Reduced gene dosage across 9p21.3 was associated with increased tumor thickness, mitotic rate, and ulceration (P = 0.02, 0.02, and 0.002, respectively), specifically in coding regions impacting on CDKN2B and P14ARF and CDKN2A. Loss at MTAP (P = 0.05) and the interferon gene cluster (P = 0.03) on 9p21 was also associated with tumor ulceration. There was no association between reduced gene dosage at 9p21.3 and subtype or site of tumor. This study presents supportive evidence that CDKN2B, P14ARF, and CDKN2A may all play a tumor suppressor role in melanoma progression. © 2010 Wiley-Liss, Inc.

Ancillary