Get access

Optimal methods for meta-analysis of genome-wide association studies

Authors


Abstract

Meta-analysis of genome-wide association studies involves testing single nucleotide polymorphisms (SNPs) using summary statistics that are weighted sums of site-specific score or Wald statistics. This approach avoids having to pool individual-level data. We describe the weights that maximize the power of the summary statistics. For small effect-sizes, any choice of weights yields summary Wald and score statistics with the same power, and the optimal weights are proportional to the square roots of the sites' Fisher information for the SNP's regression coefficient. When SNP effect size is constant across sites, the optimal summary Wald statistic is the well-known inverse-variance-weighted combination of estimated regression coefficients, divided by its standard deviation. We give simple approximations to the optimal weights for various phenotypes, and show that weights proportional to the square roots of study sizes are suboptimal for data from case-control studies with varying case-control ratios, for quantitative trait data when the trait variance differs across sites, for count data when the site-specific mean counts differ, and for survival data with different proportions of failing subjects. Simulations suggest that weights that accommodate intersite variation in imputation error give little power gain compared to those obtained ignoring imputation uncertainties. We note advantages to combining site-specific score statistics, and we show how they can be used to assess effect-size heterogeneity across sites. The utility of the summary score statistic is illustrated by application to a meta-analysis of schizophrenia data in which only site-specific P-values and directions of association are available. Genet. Epidemiol. 2011.© 2011 Wiley Periodicals, Inc. 35:581-591, 2011

Ancillary