SEARCH

SEARCH BY CITATION

References

  • Annen, C. (2009), Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships, Tectonophysics, doi:10.1016/j.tecto.2009.04.010.
  • Audétat, A. (2010), Source and evolution of molybdenum in the porphyry Mo [-Nb] deposit at Cave Peak, Texas, J. Petrol., 51, 17391760.
  • Bachmann, O., and G. W. Bergantz (2003), Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma systems, Geology, 31, 789792.
  • Becker, S. P., A. Fall, and R. J. Bodnar (2008), Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O-NaCl solutions (> 30 wt % NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits, Econ. Geol., 103, 539554.
  • Best, M. G., E. H. Christiansen, and R. H. Blank Jr. (1989), Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah, Geol. Soc. Am. Bull., 101, 10761090.
  • Birck, J. L., M. R. Barman, and F. Capmas (1997), Re-Os isotopic measurements at the femtomole level in natural samples, Geostand. Newslett., 20, 1927.
  • Bowring, J. F., N. M. McLean, and S. A. Bowring (2011), Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux, Geochem. Geophys. Geosyst., 12, doi:10.1029/2010GC003479.
  • Braxton, D. P., D. R. Cooke, J. Dunlap, M. Norman, P. Reiners, H. Stein, and P. Waters (2012), From crucible to graben in 2.3 Ma: A high-resolution geochronological study of porphyry life cycles, Boyongan-Bayugo copper-gold deposits, Philippines, Geology, 40(5), 471474.
  • Burnham, C. W. (1997), Magmas and hydrothermal fluids, in Geochemistry of Hydrothermal Ore Deposits, edited by H. L. Barnes, 3rd ed., p. 63123, John Wiley & Sons.
  • Candela, P. A. (1997), A review of shallow, ore-related granites: Textures, volatiles, and ore metals, J. Petrol., 38, 16191633.
  • Carten, R. B., E. P. Geraghty, B. M. Walker, and J. R. Shannon (1988a), Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado, Econ. Geol., 83, 266296.
  • Carten, R. B., B. M. Walker, E. P. Geraghty, and A. Gunow (1988b), Comparison of field-based studies of the Henderson porphyry molybdenum deposit, Colorado, with experimental and theoretical models of porphyry systems, in Canadian Institute of Mining and Metallurgy Special Volume 39, edited by Taylor, R. P., and D. F. Strong, 351366.
  • Carten, R. B., W. H. White, and H. J. Stein (1993), High-grade granite-related molybdenum systems; classification and origin, in Mineral deposit modeling: Geological Association of Canada Special Paper, 40, edited by R. V. Kirkham, W. D. Sinclair, R. I. Thorpe, and J. M. Duke, 521544.
  • Cathles, L. M., A. H. J. Erendi, and T. Barrie (1997), How long can a hydrothermal system be sustained by a single intrusive event? Econ. Geol., 92, 766771.
  • Chapin, C. E. (2012), Origin of the Colorado Mineral Belt, Geosphere, 8, 2843, doi:10.1130/GES00694.1
  • Cline, J. S., and R. J. Bodnar (1994), Direct evolution of a brine from a crystallizing silicic melt at Questa, New Mexico, molybdenum deposit, Econ. Geol., 89, 17801802.
  • Cohen, A. S., and F. G. Waters (1996), Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry, Anal. Chim. Acta, 332, 269275.
  • Coleman, D. S., W. Gray, and A. F. Glazner (2004), Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California, Geology, 32, 433436.
  • Cordell, L., C. L. Long, and D. W. Jones (1985), Geophysical expression of the batholith beneath Questa caldera, New Mexico, J. Geophys. Res., 90, 1126311269.
  • Davis, J. W., D. S. Coleman, J. T. Gracely, R. Gaschnig, and M. Stearns (2012), Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA, Contrib. Mineral. Petr., 163, 449465, doi: 10.1007/s00410-011-0683-7
  • Farmer, G., and D. DePaolo (1984), Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure 2. Nd and Sr isotopic studies of unmineralized and Cu- and Mo-mineralized granite in the Precambrian Craton, J. Geophys. Res., 89, doi:10.1029/JB089iB12p10141.
  • Faure, G., and J. L. Powell (1972), Strontium isotope geology, Springer, Berlin Heidelberg, New York.
  • Fournier, R. O. (1999), Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment, Econ. Geol., 94, 11931211.
  • Glazner, A. F., J. M. Bartley, D. S. Coleman, W. Gray, and R. Z. Taylor (2004), Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today, 14, 411.
  • Hanson, R. B., and A. F. Glazner (1995), Thermal requirements for extensional emplacement of granitoids, Geology, 23, 213216.
  • Harrison, T. M. (1981), Diffusion of 40Ar in hornblende, Contrib. Mineral. Petr., 78, 324331.
  • Harrison, T. M., I. Duncan, and I. McDougall (1985), Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects, Geochim. Cosmochim. Acta, 49, 24612468.
  • Henry, C. D., H. B. Elson, W. C. McIntosh, M. T. Heizler, and S. B. Castor (1997), Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology, Econ. Geol., 92, 807826.
  • Hildreth, W. (1981), Gradients in silicic magma chambers: Implications for lithospheric magmatism, J. Geophys. Res., 86, 1015310192.
  • Huber C., O. Bachmann, and J. Dufek (2012), Crystal-poor verses crystal-rich ignimbrites: A competition between stirring and reactivation, Geology, 40, 115118.
  • Hulen J. B., D. L. Nielson, F. Goff, J. N. Gardner, and R. W. Charles (1987), Molybdenum mineralization in an active geothermal system, Valles caldera, New Mexico, Geology, 15, 748752.
  • Jaffey, A. H., K. F. Flynn, L. E. Glendenin, W. C. Bently, and A. M. Essling (1971), Precision measurement of the half-lives and specific activities of U235 and U238, Phys. Rev. C, 4, 18891906.
  • Johnson, C. M., and P. W. Lipman (1988), Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico, Contrib. Mineral. Petr., 100, 107128.
  • Johnson, C. M., G. K. Czamanske, and P. W. Lipman (1989), Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of plutonic and volcanic rocks, Contrib. Mineral. Petr., 103, 90109.
  • Johnson, C. M., P. W. Lipman, and G. K. Czamanske (1990), H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere, Contrib. Mineral. Petr., 104, 99124.
  • Keith, J. D., W. C. Shanks, D. A. Archibald, and E. Farrar (1986), Volcanic and intrusive history of the Pine Grove porphyry molybdenum system, southwestern Utah, Econ. Geol., 81, 553577.
  • Klemm, L. M., T. Pettke, and C. A. Heinrich (2008), Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA, Miner. Deposita, 43, 533552.
  • Lawley, C. J. M., J. P. Richards, R. G. Anderson, R. A. Creaser, and L. M. Heaman (2010), Geochronology and geochemistry of the MAX porphyry Mo deposit and its relationship to Pb-Zn-Ag mineralization, Kootenay arc, southeastern British Columbia, Canada, Econ. Geol., 105, 11131142.
  • Leuthold, J., O. Müntener, L. P. Baumgartner, B. Putlitz, M. Ovtcharova, and U. Schaltegger (2012), Time resolved construction of a bimodal laccolith [Torres del Paine, Patagonia], Earth Planet. Sci. Lett., 325, 8592.
  • Lipman, P. W. (1988), Evolution of silicic magma in the upper crust: The mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, U.S.A., Trans. R. Soc. Edinburgh: Earth Sci., 79, 265288.
  • Lipman, P. W. (1992), Ash-flow calderas as structural controls of ore deposits — recent work and future problems, U. S. Geol. Surv. Bull., 2012, L1L12.
  • Lipman, P. W. (2006), Geologic map of the central San Juan caldera cluster, southwestern Colorado, Pamphlet to accompany U.S. Geol. Surv. Map, I-2799, 37 p.
  • Lipman, P. W. (2007), Incremental assembly and prolonged consolidation of Cordilleran magma chambers; evidence from the Southern Rocky Mountain volcanic field, Geosphere, 3, 4270.
  • Lipman, P. W., H. H. Mehnert, and C. M. Naeser (1986), Evolution of the Latir volcanic field, northern New Mexico, and its relation to the Rio Grande rift, as indicated by potassium-argon and fission track dating, J. Geophys. Res., 91, 63296345.
  • Lipman, P. W., and J. C. Reed (1989), Geologic map of the Latir volcanic field and adjacent areas, northern New Mexico, U.S. Geol. Surv. Map, I-1907, scale 1:48,000.
  • Lowell, J. D., and J. M. Guilbert (1970), Lateral and vertical alteration-mineralization zoning in porphyry ore deposits, Econ. Geol., 65, 373408.
  • Lowenstern, J. (1994), Dissolved volatile concentrations in an ore-forming magma, Geology, 22, 893896.
  • Mahood G. A., and A. N. Halliday (1988), Generation of high-silica rhyolite; a Nd, Sr, and O isotopic study of Sierra La Primavera, Mexican neovolcanic belt, Contrib. Mineral. Petr., 100, 183191.
  • Maksaev, V., F. Munizaga, M. McWilliams, M. Fanning, R. Mathur, J. Ruiz, and M. Zentilli (2004), New chronology for El Teniente, Chilean Andes, from U-Pb, 40Ar/39Ar, Re-Os and fission-track dating: Implications for the evolution of a supergiant porphyry Cu-Mo deposit, Soc. Econ. Geol. Special Publication, 11, 1554.
  • Markey, R., J. L. Hannah, J. W. Morgan, and H. J. Stein (2003), A double spike for osmium analysis of highly radiogenic samples, Chem. Geol., 200, 395406.
  • Marsh, T. M., T. M. Einaudi, and M. McWilliams (1997), 40Ar/39Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos district, Chile, Econ. Geol., 92, 784806.
  • Mattinson, J. M. (2005), Zircon U-Pb chemical abrasion [CA-TIMS] method: Combined annealing and multi-step dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 4756.
  • Matzel, J. E. P., S. A. Bowring, and R. B. Miller (2006), Time scales of pluton construction at differing crustal levels; examples from the Mount Stuart and Tenpeak intrusions, north Cascades, Washington, Geol. Soc. Am. Bull., 118(11-12), 14121430.
  • McLean, N. M., J. F. Bowring, and S. A. Bowring (2011), An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophys. Geosys., 12, doi:10.1029/2010GC003478.
  • McLemore, V. T., and R. M. North (1984), Occurrences of precious metals and uranium along the Rio Grande rift in northern New Mexico, New Mexico Geol. Society Guidebook, 35th Field Conference.
  • Meyer, J. (1991), Volcanic, plutonic, tectonic, and hydrothermal history of the southern Questa caldera, New Mexico, Ph.D thesis, University of California at Santa Barbara, Santa Barbara.
  • Meyer, J., and K. A. Foland (1991), Magmatic-tectonic interaction during early Rio Grande Rift extension at Questa, New Mexico, Geol. Soc. Am. Bull., 103, 9931006.
  • Pettke, T., F. Oberli, and C. A. Heinrich (2010), The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions, Earth Planet. Sci. Lett., 296, 267277, doi:10.1016/j.epsi.2010.05.007.
  • Ratajeski, K., T. W. Sisson, and A. F. Glazner (2005), Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust, Contrib. Mineral. Petr., 149, 713734.
  • Richards, J. P. (2009), Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere, Geology, 37(3), 247250.
  • Richards, J. P. (2011), Magmatic to hydrothermal metal fluxes in convergent and collided margins, Ore Geol. Rev., 40, 126.
  • Rose, M., and D. E. Pride (2010), “Target mapping” at Bonanza, Colorado: Integrating geology, geochemistry, and mineralization models in a caldera setting, Abstracts with Programs – Geological Society of America, 42, 54.
  • Ross, P. S., M. Jèbrak, and B. M. Walker (2002), Discharge of hydrothermal fluids from a magma chamber and concomitant formation of a stratified breccia zone at the Questa porphyry molybdenum deposit, New Mexico, Econ. Geol., 97, 16791699.
  • Rowe, A. (2012), Fluid evolution of the magmatic-hydrothermal breccia of the Goat Hill ore body, Questa Climax-type porphyry molybdenum system, New Mexico — a fluid inclusion study, Ph.D thesis, New Mexico Institute of Mining and Technology, Socorro.
  • Rytuba, J. J. (1994), Evolution of volcanic and tectonic features in caldera settings and the importance in the localization of ore deposits, Econ. Geol., 89, 16871696.
  • Seedorff, E., and M. T. Einaudi, (2004a), Henderson porphyry molybdenum system, Colorado: I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style, Econ. Geol., 99, 337.
  • Seedorff, E., and M. T. Einaudi (2004b), Henderson porphyry molybdenum system, Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids, Econ. Geol., 99, 3770.
  • Selby, D., B. E. Nesbitt, K. Muehlenbachs, and W. Prochaska (2000), Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia, Econ. Geol., 95, 183202.
  • Selby, D., R. A. Creaser, H. J. Stein, R. J. Markey, and J. L. Hannah (2007), Assessment of the 187Re decay constant by cross calibration of Re-Os molybdenite and U-Pb zircon chronometers in magmatic ore systems, Geochim. Cosmochim. Acta, 71(8), 19992013.
  • Shirey, S. B., and R. J. Walker (1995), Carius tube digestion for low-blank rhenium-osmium analysis, Anal. Chem., 67, 21362141.
  • Singer, B., and P. Marchev (2000), Temporal evolution of arc magmatism and hydrothermal activity including epithermal gold veins, Borovitsa caldera, southern Bulgaria, Econ. Geol., 95, 11551164.
  • Smoliar, M. I., R. J. Walker, and J. W. Morgan (1996), Re/Os ages of group IIA, IIIA, IVA, and IVB iron meteorites, Science, 271, 10991102.
  • Spera, F. (1980), Thermal evolution of plutons: A parameterized approach, Science, 207, 299301.
  • SRK Consulting (U.S.), Inc. (2004), Molycorp Questa — Report on geologic mapping and cross section project, Unpublished report for Molycorp, Inc., 82 p.
  • Stacey, J. S., and J. D. Kramers (1975), Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 26, 207221.
  • Stein, H. J. (1985), A Lead, Strontium, and Sulfur Isotope Study of Laramide-Tertiary Intrusions and Mineralization in the Colorado Mineral Belt with Emphasis on Climax-type Porphyry Molybdenum Systems plus a Summary of Other Newly Acquired Isotopic and Rare Earth Element Data, University of North Carolina at Chapel Hill, PhD dissertation, 493 p.
  • Stein, H. J. (2006), Low-rhenium molybdenite by metamorphism in northern Sweden: Recognition, genesis, and global implications, Lithos, 87, 300327.
  • Stein, H. J., and J. L. Hannah (1985), Movement and origin of ore fluids in Climax-type systems, Geology, 13, 469474.
  • Stein, H. J., J. W. Morgan, R. J. Markey, A. E. Williams-Jones, M. Heiligmann, and J. R. Clark (1999), Re-Os age for the Hemlo Au deposit, Ontario, Canada: Durability of the Re-Os chronometer, EOS Trans. AGU, 80, F1082.
  • Stein, H. J., R. J. Markey, J. W. Morgan, J. L. Hannah, and A. Scherstén (2001), The remarkable Re-Os chronometer in molybdenite: How and why it works, Terra Nova, 13, 479486.
  • Stein, H. J., and B. Bingen (2002), 1.05-1.01 Ga Sveconorwegian metamorphism and deformation of the supracrustal sequence at Sæsvatn, south Norway: Re-Os dating of Cu-Mo mineral occurrences, in D. Blundell, F. Neubauer, and A. von Quadt, (eds.), The Timing and Location of Major Ore Deposits in an Evolving Orogen, Geological Society, London, Special Publications, 204, 319–335.
  • Stein, H. J., A. Scherstén, J. Hannah, and R. Markey (2003), Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite, Geochim. Cosmochim. Acta, 67, 36733686, doi:10.1016/S0016-7037[00]00269-2.
  • Suzuki, K., Shimizu, H., and A. Masuda (1996), Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits, Geochim. Cosmochim. Acta, 60, 31513159.
  • Tappa, M. J., D. S. Coleman, R. D. Mills, and K. M. Samperton (2011), The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico, Geochem. Geophys. Geosys., 12, Q10011, doi:10.1029/2011GC003700
  • U.S. Geological Survey (2011), Molybdenum, Mineral Commodity Summaries.
  • von Quadt, A., M. Erni, K. Martinek, M. Moll, I. Peytcheva, and C. Heinrich (2011), Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems, Geology, 39, 731734.
  • Wallace, S. R., N. K. Muncaster, D. C. Jonson, W. B. MacKenzie, A. A. Bookstrom, and V. E. Surface (1968), Multiple intrusion and mineralization at Climax, Colorado, in Ore deposits of the United States, 1933–1967: New York, American Institute Mining Metallurgy and Petroleum Engineers, 1, edited by J. D. Ridge, 605640.
  • Watson, E. B., and T. M. Harrison (1983), Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types, Earth Planet. Sci. Lett., 64, 295304.
  • White, W. H., A. A. Bookstrom, R. J. Kamilli, M. W. Ganster, R. P. Smith, D. E. Ranta, and R. C. Steininger (1981), Character and origin of Climax-type molybdenum deposits, Econ. Geol. 75th Anniversary Volume, 270316.
  • Wilson, A. J., D. R. Cooke, H. J. Stein, M. C. Fanning, J. R. Holliday, and I. J. Tedder (2007), U-Pb and Re-Os geochronologic evidence for two alkali porphyry ore-forming events in the Cadia district, New South Wales, Australia, Econ. Geol., 102, 326.
  • Yoshinobu, A. S., D. A. Okaya, and S. R. Paterson (1998), Modeling the thermal evolution of fault-controlled magma emplacement models: Implications for the solidification of granitoid plutons, J. Struct. Geol., 20, 12051218.
  • Zimmerer, M. J., and W. C. McIntosh (2012), The Ar/Ar geo- and thermochronology of the Latir volcanic field and the associated intrusions: Understanding caldera magmatic processes using the volcanic-plutonic relationship, Geol. Soc. Am. Bull., doi:10.1130/B30544.1
  • Zimmerman, A., H. J. Stein, J. L. Hannah, D. Koželj, K. Bogdanov, and T. Berza (2008), Tectonic configuration of the Aspuseni-Banat-Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re/Os molybdenite ages, Miner. Deposit, 43, 121.