SEARCH

SEARCH BY CITATION

References

  • Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4(3), 1027.
  • Börzsönyi, T., T. C. Halsey, and R. E. Ecke (2008), Avalanche dynamics on a rough inclined plane, Phys. Rev. E., 78, 011306.
  • Calder, E. S., R. S. J. Sparks, and M. C. Gardeweg (2000), Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile, J. Volcanol. Geoth. Res., 104, 201235.
  • Cannat, M. (1993), Emplacement of mantle rocks in the seafloor at mid-ocean ridges, J. Geophys. Res. Sol. Earth., 98(B3).
  • Cannat, M., Y. Lagabrielle, H. Bougault, J. de Casey, N. Coutures, L. Dmitriev, and Y. Fouquet (1997), Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: Geological mapping in the 15 N region, Tectonophy., 279, 1–4, 193213.
  • Cannat, M., D. Sauter, J. Escartín, L. Lavier, and S. Picazo (2009), Oceanic corrugated surfaces and the strength of the axial lithosphere at slow-spreading ridges, Earth Planet. Sci. Lett., 288(1), 174183.
  • Cassar, C., M. Nicolas, and O. Pouliquen (2005), Submarine granular flows down inclined planes, Phys. Fluids, 17, 103301.
  • Cherkashov, G., V. Bel'tenev, V. Ivanov, L. Lazareva, M. Samovarov, V. Shilov, T. Stepanova, G. Glasby, and V. Kuznetsov (2008), Two new hydrothermal fields at the Mid-Atlantic Ridge, Mar. Georesour. Geotechnol., 26(4), 308316.
  • Escartin, J., P. Cowie, R. Searle, S. Allerton, N. Mitchell, C. MacLeod, and A. Slootweg (1999), Quantifying tectonic strain and magmatic accretion at a slow-spreading ridge segment, Mid-Atlantic Ridge, 29 N: J. Geophys. Res., 104(B5), 10,42110,437.
  • Félix, G., and N. Thomas (2004), Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits, Earth Planet. Sci. Lett., 221(1–4), 197213.
  • Fernandez-Nieto, E., F. Bouchut, D. Bresch, M. J. Castro-Diaz, and A. Mangeney (2008), A new Savage-Hutter type model for submarine avalanches and generated tsunami, J. Comp. Phys., 227(16), 77207754.
  • Forterre, Y., and O. Pouliquen (2003), Long-surface-wave instability in dense granular flows, J. Fluid Mech., 486, 2150.
  • GDR Midi (2004), On dense granular flows, E. Phys. J. E., 14 367371.
  • Grācia, E., J. Charlou, J. Radford-Knoery, and L. Parson (2000), Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38 N–34 N), Ultramafic exposures and hosting of hydrothermal vents: Earth Planet. Sci. Lett., 177(1–2), 89103.
  • Huang, P., S. Solomon, E. Bergman, and J. Nabelek (1986), Focal depths and mechanisms of Mid-Atlantic Ridge earthquakes from body waveform inversion, J. Geophys. Res., 91, 579598.
  • Jessop, D., K. Kelfoun, P. Labazuy, A. Mangeney, O. Roche, J. L. Tillier, M. Trouillet, and G. Thibault (2012), LiDAR derived morphology of the 1993 Lascar pyroclastic flow deposits, and implication for flow dynamics and rheology, J. Volcano. Geotherm. Res., 245246, 81–97.
  • Karson, J., and H. Dick (1983), Tectonics of ridge-transform intersections at the Kane Fracture Zone, Mar. Geophys. Res., 6(1), 5198.
  • Karson, J. A., G. Thompson, S. E. Humphris, J. M. Edmond, W. B. Bryan, J. R. Brown, A. T. Winters, R. A. Pockalny, J. F. Casey, and A. C. Campbell (1987), Along-axis variations in seafloor spreading in the MARK area: Nature, 328(20), 681685.
  • Karson, J. A., G. L. Früh-Green, D. S. Kelley, E. A. Williams, D. R. Yoerger, and M. Jakuba (2006), Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30°N, Geochem. Geophys. Geosyst., 7(6), Q06016, doi:10.1029/2005GC001109.
  • Lagabrielle, Y., and M. Cannat (1990), Alpine Jurassic ophiolites resemble the modern central Atlantic basement, Geology, 18(4), 319322.
  • Lavier, L., Roger W. Buck, and A. Poliakov (1999), Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults, Geology, 27(12), 1127.
  • Lube, G., S. J. Cronin, T. Platz, A. Freundt, J. N. Procter, C. Henderson, and M. F. Sheridan (2007), Flow and deposition of pyroclastic granular flows: A type example from the 1975 Ngauruhoe eruption, New Zealand, J. Volcanol. Geoth. Res., 161 (3), 165186.
  • Lucas, A., and A. Mangeney (2007), Mobility and topographic effects for large Valles Marineris landslides on Mars, Geophys. Res. Lett., 34, L10201.
  • MacDonald, K. C. (1982), Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Annu. Rev. Earth Planet. Sci., 10, 155.
  • Macleod, C. J., R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows, S. C. Unsworth, K. L. Achenbach, and M. Harris (2009), Life cycle of oceanic core complexes, Earth Planet. Sci. Lett., 1–12, doi:10.1016/j.epsl.2009.08.016.
  • Mangeney, A., F. Bouchut, N. Thomas, J. Vilotte, and M. Bristeau (2007), Numerical modeling of self-channeling granular flows and of their levee-channel deposits, J. Geophys. Res., 112.
  • Mangeney, A., O. Roche, O. Hungr, N. Mangold, G. Faccanoni, and A. Lucas (2010), Erosion and mobility in granular collapse over sloping beds, J. Geophys. Res., 115(F3), F03040.
  • Mangold, N., A. Mangeney, V. Migeon, V. Ansan, A. Lucas, D. Baratoux, and F. Bouchut (2010), Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties, J. Geophys. Res., 115(E11), E11001, doi:10.1029/2009JE003540.
  • Mével, C., M. Cannat, P. Gente, E. Marion, J. Auzende, and J. Karson (1991), Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR, 23 N), Tectonophysics, 190(1), 3153.
  • Micallef, A., D. G. Masson, C. Berndt, and D. A. V. Stow (2007), Morphology and mechanics of submarine spreading: A case study from the Storegga Slide, J. Geophys. Res., 112(F3), F03023, doi:10.1029/2006JF000739.
  • Mitchell, N., M. Tivey, and P. Gente (2000), Seafloor slopes at mid-ocean ridges from submersible observations and implications for interpreting geology from seafloor topography, Earth Planet. Sci. Lett., 183(3–4), 543555.
  • Ondreas, H., M. Cannat, Y. Fouquet, and A. Normand (2012), Geological context and vents morphology of the ultramafic-hosted Ashadze hydrothermal areas (Mid-Atlantic Ridge 13°N): Geochem. Geophys. Geosyst., 13, Q0AG14, doi:10.1029/2012GC004433.
  • Pelanti, M., F. Bouchut, and A. Mangeney (2008), A Roe-Type Scheme for Two-Phase Shallow Granular Flows over Variable Topography, Math. Model. Numeric. Analy., (ESAIM:M2AN), 42, 851885.
  • Picazo, S., M. Cannat, A. Delacour, J. Escartín, S. Rouméjon, and S. Silantyev (2012), Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°–15°N, The role of magmatic injections and hydrothermal alteration, Geochem. Geophys. Geosyst., 13, Q04G09, doi:10.1029/2012GC004121.
  • Pouliquen, O. (1999a), Scaling laws in granular flows down rough inclined planes, Phys. Fluids, 11, 542548.
  • Pouliquen, O. (1999b), On the shape of granular fronts down rough inclined planes, Phys. Fluids, 11, 19561958.
  • Pouliquen, O., and J. W. Vallance (1999), Segregation induced instabilities of granular fronts, Chaos, 9, 621630.
  • Pouliquen, O., and Y. Forterre (2002), Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane, J. Fluid Mech., 453, 133151.
  • Rutter, E. H., and S. Green (2011), Quantifying creep behaviour of clay-bearing rocks below the critical stress state for rapid failure: Mam Tor landslide, Derbyshire, England: J. Geol. Soc., 168(2), 359372, doi:10.1144/0016-76492010-133.
  • Searle, R. C., P. A. Cowie, N. C. Mitchell, S. Allerton, C. J. Macleod, J. Escartín, S. M.Russell, P.A. Slootweg, and T. Tanaka (1998), Fault structure and detailed evolution of a slow spreading ridge segment: The Mid-Atlantic Ridge at 29 N, Earth Planet. Sci. Lett., 154(1), 167183.
  • Shaw, W., and J. Lin (1996), Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation, J. Geophys. Res., 101(B8), 17977.
  • Simeoni, P., J. Sarrazin, P. M. Sarradin, H. Ondreas, C. Scalabrin, J. M. Sinquin, and H. Nouze (2007), Victor 6000: New high-resolution tools for deep sea research, Oceans, 16.
  • Small, C. (1998), Global systematics of mid-ocean ridge morphology, in Faulting and Magmatism at Mid-Ocean Ridges, Geophysical Monograph 106, pp. 125, AGU.
  • Smith, D., J. Cann, and J. Escartin (2006), Widespread active detachment faulting and core complex formation near 13 N on the Mid-Atlantic Ridge, Nature, 442, doi:10.1038/nature04950.
  • Smith, D., J. Escartin, M. Cannat, M. Tolstoy, C. Fox, D. Bohnenstiehl, and S. Bazin (2003), Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15°–35° N), J. Geophys. Res., 108, 2167.
  • Smith, D., J. Escartín, H. Schouten, and J. Cann (2008), Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading Mid-Ocean Ridges (Mid-Atlantic Ridge, 13°–15° N), Geochem. Geophys. Geosyst., 9(3).
  • Smith, D., S. Humphris, M. Tivey, and J. Cann (1997), Viewing the morphology of the Mid-Atlantic Ridge from a new perspective, EOS Trans., 78, 265265.
  • Tapponnier, P., and J. Francheteau (1978), Necking of the lithosphere and the mechanics of slowly accreting plate boundaries, J. Geophys. Res., 83(B8), 39553970.
  • Thatcher, W., and D. Hill (1995), A simple model for the fault-generated morphology of slow-spreading mid-oceanic ridges, J. Geophys. Res., 100(B1), 561570.
  • Tucholke, B. (1992), Massive submarine rockslide in the rift-valley wall of the Mid-Atlantic Ridge, Geology, 20(2), 129.
  • Tucholke, B., W. Kenneth Stewart, and M. Kleinrock (1997), Long-term denudation of ocean crust in the central North Atlantic Ocean, Geology, 25(2), 171.
  • Zonenshain, L., M. Kuzmin, A. Lisitsin, Y. A. Bogdanov, BV Baranov (1989), Tectonics of the Mid-Atlantic rift valley between the TAG and MARK areas (24°–26° N): Evidence for vertical tectonism, Tectonophysics, 159(1–2), 123.