SEARCH

SEARCH BY CITATION

References

  • Allègre, C. J., and D. Ben Othman (1980), Nd-Sr isotopic relationship in granitoid rocks and continental crust development: A chemical approach to orogenesis, Nature 286, 335341.
  • Amstrong, R. L. (1981), Radiogenic isotopes: The case for crustal recycling on a near-steady-state no continental-growth Earth, Phil. Trans. Roy. Soc. Lond. Math. Phys. Eng. Sci., 301(1461), 44372.
  • Annen, C., J. D. Blundy, and R. S. J. Sparks (2006), The genesis of intermediate and silicic magmas in deep crustal hot zones, J. Petrol. 47, 505539.
  • Barbero, L., C. Villaseca, G. Rogers, and P. E. Brown (1995), Geochemical and isotopic disequilibrium in crustal melting: An insight from the anatectic granitoids from Toledo, Spain, J. Geophys. Res. 100(B8).
  • Bea, F., and P. Montero (1999), Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy, Geochim. Cosmochim. Acta 63, 11331153.
  • Behn, M. B., P. B. Kelemen, G. Hirth, B. R. Hacker, and H. J. Massonne (2011), Diapirs as the source of the sediment arc signature in arc lavas, Nat. Geosci., DOI: 10.1038/NGEO1214.
  • Behn, M. D., and P. B. Kelemen (2003), Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks, Geochem.Geophys. Geosyst. 4, art. no. 1041.
  • Bittner, D., and H. Schmeling (1995), Numerical modeling of melting processes and induced diapirism in the lower crust, Geophys. J. Int., 123, 5970.
  • Bruce, R. M., E. P. Nelson, S. G. Weaver, and D. R. Lux (1991), Temporal and spatial variation in the south Patagonian batholith: Constraints on magmatic arc development, in Andean Magmatism and Its Tectonic Setting, edited by R. S. Harmon, C. W. Rapela, Geological Society of America Special Papers, 265, 112.
  • Carlson, R. L. (2003), Bound water content of the lower oceanic crust estimated from modal analyses and seismic velocities of oceanic diabase and gabbro, Geophys. Res. Lett. 30, art. no. 2142.
  • Carroll, M. R., and P. J. Wyllie (1989), Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb; implications for assimilation and differentiation processes near the crust-mantle boundary, J. Petrol., 30, 13511382.
  • Castro, A., and T. V. Gerya (2008), Magmatic implications of mantle wedge plumes: Experimental study, Lithos, 103, 138148.
  • Castro, A., J. Diaz-Alvarado, and C. Fernandez (2012a), Fractionation and incipient self-granulitization during deep-crust emplacement of Lower Ordovician Valle Fértil batholith at the Gondwana active margin of South America, Gondwana Res., http://dx.doi.org/10.1016/j.gr.2012.08.011.
  • Castro, A., A. García-Casco, C. Fernández, L. G. Corretgé, I. Moreno-Ventas, T. Gerya, and I. Löw (2009), Ordovician ferrosilicic magmas: Experimental evidence for ultrahigh temperatures affecting a metagreywacke source, Gondwana Res., 16, 622632.
  • Castro, A., T. V. Gerya, A. García-Casco, C. Fernández, J. Díaz Alvarado, I. Moreno-Ventas, and I. Löw (2010), Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes. Implications for the origin of cordilleran-type batholiths. J. Petrol. 51, 12671295.
  • Castro, A., K. Vogt, and T. Gerya (2012b), Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model, Gondwana Res., http://dx.doi.org/10.1016/j.gr.2012.07.004
  • Chauvel, C., E. Lewin, M. Carpentier, N. T. Arndt, and J.-C. Marini (2008), Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array, Nat. Geosci., 1, 6467.
  • Christensen, N. I., and W. D. Mooney (1995), Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res., 10, 97619788.
  • Clauser, C., and E. Huenges (1995), Thermal conductivity of rocks and minerals, in Rock Physics and Phase Relations. AGU Reference Shelf 3, edited by T. J. Ahrens, American Geophysical Union, Washington, DC, 105126.
  • Clift, P., and P. Vannucchi (2004), Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust, Rev. Geophys., 42, RG2001, doi:10.1029/2003RG000127.
  • Cloos, M., and R. L. Shreve (1988), Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion, Pure Appl. Geophys. 128, 501545.
  • Condie, K. C. (1997), Plate Tectonics and Crustal Evolution. Butterworth-Heinemann, Oxford.
  • Connolly, J. A. D. (2005), Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett. 236, 524541.
  • Currie, C. A., C. Beaumont, and R. S. Huismans (2007), The fate of subducted sediments: A case for backarc intrusion and underplating, Geology, 35, 11111114.
  • DeBari, S. M., and N. H. Sleep (1991), High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: Implications for primary magmas and the nature of arc crust, Geol. Soc. Am. Bull. 103, 3747.
  • DeCelles, P. G., M. N. Ducea, P. Kapp, and G. Zandt (2009), Cyclicity in Cordilleran orogenic systems, Nat. Geosci. 2, 251257.
  • Defant, M. J., and M. S. Drummond (1990), Derivation of some modern arc magmas by melting of young subducted lithosphere, Letters to Nature 347, 662665.
  • Drummond, M. S., and M. J. Defant (1990), A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons, J. Geophys. Res. 95, 2150321521.
  • Ducea, M. N., V. Lutkov, V. T. Minaev, B. R. Hacker, L. R. Ratschbacher, P. Luffi, G. E. Gehrels, J. Vervoort, M. O. McWilliams, and J. Metcalf (2003), Building the Pamirs: The view from the underside. Geology, 31, 849852.
  • Faure, G. (2001), Origin of Igneous Rocks. The Isotopic Evidence. Springer, Berlin-Heidelberg, 496 pp.
  • Frost, T. P., and G. A. Mahood (1987), Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California, Geol. Soc. Am. Bull. 99, 272291.
  • Gerya, T. V., J. A. D. Connolly, D. A. Yuen, W. Gorczyk, and A. M. Capel (2006), Sesmic implications of mantle wedge plumes, PEPI, 156, 5974.
  • Gerya, T. V., and F. I. Meilick (2011), Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts, J. Metamorph. Geol. 29, 731.
  • Gerya, T. V., and D. A. Yuen (2003), Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties, Phys. Earth Planet. In. 140, 293318.
  • Gerya, T. V., and D. A. Yuen (2007), Robust characteristics method for modelling multiphase visco-elasto plastic thermo-mechanical problems. Phys. Earth Planet. In. 163, 83105.
  • Gerya, T. V., D. A. Yuen, and E. O. D. Sevre (2004), Dynamical causes of incipient magma chambers above slabs. Geology, 32, 8992.
  • Gorczyk, W., A. P. Willner, T. V. Gerya, J. A. D. Connolly, and J.-P. Burg (2007), Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling, Phys. Earth Planet. In. 163, 209232.
  • Green, D. H. (1973), Experimental studies on a model upper mantle composition at high pressure under water-undersaturated and water-saturated conditions, Earth Planet. Sci. Lett. 19, 3753.
  • Green, T. H. (1980), Island arc and continent-building magmatism—review of petrogenic models based on experimental petrology and geochemistry, Tectonophysics 63, 367385.
  • Hacker, B. R., P. B. Kelemen, and M. D. Behn (2011), Differentiation of the continental crust, Earth Planet. Sci. Lett., 307, 501516.
  • Hacker, B. R., P. Luffi, V. Lutkov, V. T. Minaev, L. R. Ratschbacher, T. Plank, M. N. Ducea, A. E. Patino-Douce, M. O. McWilliams, and J. Metcalf (2005), Near-ultrahigh pressure processing of continental crust: Miocene crustal xenoliths from the Pamir. J. Petrol., 46, 16611687.
  • Hall, P. S., and C. Kincaid (2001), Diapiric flow at subduction zones: A recipe for rapid transport. Science, 292, 24722475.
  • Hart, S. R., A. Zindler (1986), In search of a bulk-earth composition. Chem. Geol. 57, 247267.
  • Haschke, M., W. Siebel, A. Günther, and E. Scheuber (2002), Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S). J. Geophys. Res., 107, 10.1029/2001JB000328
  • Hawkesworth, C. J., and A. I. S. Kemp (2006), Evolution of the continental crust. Nature 443, 811817.
  • Hervé, F., R. J. Pankhurst, C. M. Fanning, M. Calderon, and G. M. Yaxley (2007), The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97(3–4), 373394.
  • Hess, P. C. (1989). Origin of Igneous Rocks, Harvard University Press, London, UK.
  • Hildreth, W., and S. Moorbath (1988), Crustal contributions to arc magmatism in the Andes of Central Chile, Contrib. Mineral. Petrol., 98, 455489.
  • Hirschmann, M. M. (2000), Mantle solidus: Experimental constraints and the effects of peridotite composition, Geochem. Geophys. Geosyst., 1, doi:10.1029/2000GC000070.
  • Hofmann, A. W. (1988), Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 9, 297314.
  • Hofmeister, A. M. (1999), Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science 283, 16991706.
  • Iwamori, H. (1998), Transportation of H2O and melting in subduction zones, Earth Planet. Sci. Lett. 160, 6580.
  • Johannes, W. (1985). The significance of experimental studies for the formation of migmatites, in Migmatites, edited by J. R. Ashworth, pp. 3685. Blackie, Glasgow, UK.
  • Johnson, M. C., and T. Plank (1999), Dehydration and melting experiments constrain the fate of subducted sediments, Geochem. Geophys. Geosyst. 1, doi: 1999GC000014
  • Johnston, A. D., and P. J. Wyllie (1989), The system tonalite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism, Contrib. Mineral. Petrol., 102, 257264.
  • Kay, R. W., and S. M. Kay (1991), Creation and destruction of the lower continental crust, Geologische Rundschau 80, 259278.
  • Kelemen, P. B., G. M. Yogodzinski, and D. W. Scholl (2003a), Along-strike variation in the Aleutian Island arc: Genesis of high Mg# andesite and implications of continental crust, Am. Geophysical Union Geophys. Monogr. 138, 223276.
  • Kelemen, P. (1995), Genesis of high Mg# andesites and the continental crust, Contrib. Mineral. Petrol. 120, 119.
  • Kelemen, P. B., K. Hanghøj, and A. Greene (2003b), One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, in The Crust, edited by H. D. Holland, K. K. Turekian, and R. L. Rudnick, Treatise on Geochemistry Vol. 3, pp. 593659, Elsevier Pergamon, Oxford.
  • Kemp, A. I. S., and C. J. Hawkesworth (2003). Granitic perspectives on the generation and secular evolution of the continental crust, in The Crust, edited by R. L. Rudnick, pp. 349410, Elsevier, Amsterdam.
  • King, R. L., G. E. Bebout, T. Moriguti, and E. Nakamura (2006), Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics. Earth Planet. Sci. Lett., 246, 288304.
  • Klein, E. M. (2003), Geochemistry of the igneous oceanic crust, in The Crust, edited by R. L. Rudnick, pp. 433463, Treatise on Geochemistry, Elsevier-Pergamon, Oxford.
  • Kushiro, I. (1974), Melting of hydrous upper mantle and possible generation of andesitic magma: An approach from synthetic systems, Earth Planet. Sci. Lett. 22, 294299.
  • Lee, C. T. A., X. Cheng, and U. Horodyskyj (2006), The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California, Contrib. Mineral. Petrol. 151, 222242.
  • Levander, A., and M. S. Miller (2012), Evolutionary aspects of the lithosphere discontinuity structure in the Western U.S., G-cubed, 13(1).
  • Mamani, M., G. Wörner, and T. Sempere (2010), Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space. Geol. Soc. Am. Bull., 122, 162182.
  • McCulloch, M. T., and G. J. Wasserburg (1978), Sm-Nd and Rb-Sr chronology of continental crust formation, Science 200, 10031011.
  • Miller, N. C., and M. D. Behn (2012), Timescales for the growth of sediment diapirs in subduction zones. Geophys. J. Int., 190, 13611377.
  • Niida, K., and D. H. Green (1999), Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol. 135, 1840.
  • Pankhurst, R. J., S. D. Weaver, F. Herve, and P. Larrondo (1999), Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile, J. Geol. Soc. 156(4), 673694.
  • Peacock, S. A. (1990), Fluid processes in subduction zones, Science 248, 329337.
  • Plank, T. (2005), Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents, J. Petrol. 46, 921944.
  • Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol. 145, 325394.
  • Poli, S., and M. W. Schmidt (2002), Petrology of subducted slabs, Annu. Rev. Earth Planet. Sci., 30, 207237.
  • Ranalli, G. (1995), Rheology of the Earth, Chapman and Hall, London.
  • Rapp, R. P., N. Shimizu, M. D. Norman, and G. S. Applegate (1999), Reaction between slab derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 Gpa, Chem. Geol., 160, 335356.
  • Ringwood, A. E. (1989), Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol. 82, 187207.
  • Ringwood, A. E., and D. H. Green (1966), An experimental investigation of the gabbro-eclogite transformation and some geophysical implications, Tectonophysics 3, 383427.
  • Rogers, G., and Hawkesworth, C. J. (1989), A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge, Earth Planet. Sci., 91, 271285.
  • Rudnick, R. L. (1995), Making continental crust, Nature 378, 571577.
  • Schmeling H., A. Babeyko, A. Enns, C. Faccenna, F. Funiciello, T. Gerya, G. Globalek, S. Grigull, B. Kaus, G. Morra, and J. van Hunen (2008), A benchmark comparison of spontaneous subduction models—toward a free surface, Phys. Earth Planet. In. 171, 198223.
  • Schmidt, M. W., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett. 163, 361379.
  • Scholl, D. W., and R. von Huene (2007). Crustal recycling at modern subduction zones applied to the past—issues of growth and preservation of continental basement, mantle geochemistry, and supercontinent reconstruction, in 4D Framework of Continental Crust, edited by J. Robert, D. Hatcher, M. P. Carlson, J. H. McBride, J. R. M. Catalán, Geological Society of America, vol. 200, pp. 932, Memoir: Geological Society of America, Boulder.
  • Skora, S. E., and J. D. Blundy (2010), High-pressure hydrous phase relations of Radiolarien clay and implications for the involvement of subducted sediment in arc magmatism. J. Petrol., 51(11), 22112243.
  • Staudigel, H., S. Hart, H. Schmincke, and B. Smith (1989), Cretaceous ocean crust at DSDP sites 417–418: Carbon uptake from weathering versus loss by magmatic outgassing. Geochim. Cosmochim. Acta 53, 30913094.
  • Stephens, W. E. (1988), Granitoid plutonism in the Caledonian orogen of Europe, in The Caledonian-Appalachian Orogen, edited by A. L. Harris, D. J. Fettes, Geol Soc London Spec Publ, vol. 38, 389404.
  • Stern, C. R. (1991). Role of subduction erosion in the generation of Andean magmas. Geology, 19, 7881.
  • Sun, S. S., and McDonnough, W. F. (1989), Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geological Society, London, Special Publications, vol. 42, 313345.
  • Takagi, T. (2004), Origin of magnetite- and ilmenite-series granitic rocks in the Japan arc, Am. J. Sci., 304, 169202.
  • Tamura, Y., O. Ishizuka, R. J. Stern, H. Shukuno, H. Kawabata, R. W. Embley, Y. Hirahara, Q. Chang, J.-I. Kimura, A. Nunokawa, and S. H. Bloomer (2011), Two primary basalt magma types from Northwest Rota-1 Volcano, Mariana Arc and its mantle diapir or mantle wedge plume, J. Petrol., 52(6), 11431182.
  • Tatsumi, Y. (2005), The subduction factory: How it operates in the evolving earth, GSA Today 15, no. 7.
  • Taylor, S. R., and S. M. McLennan (1985), The Continental Crust: Its Composition and Evolution, Blackwell, Melbourne.
  • Turcotte, D. L., and G. Schubert (2002), Geodynamics, Cambridge University Press, Cambridge, UK.
  • Ueda, K., T. Gerya, S. V. Sobolev (2008), Subduction initiation by thermal-chemical plumes, Phys. Earth Planet. In. 171, 296312.
  • Vogt, K., T. V. Gerya, and A. Castro (2012), Crustal growth at active continental margins: Numerical modeling, Phys. Earth Planet. In., 192–193, 120.
  • Von Huene, R., and S. Lallemand (1990). Tectonic erosion along the Japan and Peru convergent margins, Geol. Soc. Am. Bull., 102, 704720.
  • Von Huene, R., and D. W. Scholl (1991), Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust, Rev. Geophys., 29, 279316.
  • Zhu, G., T. V. Gerya, S. Honda, P. J. Tackley, and D. A. Yuen (2011a), Influences of the buoyancy of partially molten rock on 3-D plume patterns and melt productivity above retreating slabs, Phys. Earth Planet. In., 185, 112121.
  • Zhu, G., T. V. Gerya, D. A. Yuen, S. Honda, T. Yoshida, and J. A. D. Connolly (2009), Threedimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones, Geochem. Geophys. Geosyst. 10(11).
  • Zhu, G., T. V. Gerya, and D. A. Yuen (2011b), Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model, J. Earth Sci., 22, 137142.