SEARCH

SEARCH BY CITATION

References

  • Agnew, D. C., and K. Sieh (1978), A documentary study of the felt effects of the great California earthquake of 1857, Bull. Seismol. Soc. Am., 68(6), 17171729.
  • Ando, M. (1975), Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan, Tectonophysics, 27(2), 119140, doi:10.1016/0040-1951(75)90102-X.
  • Baba, T., and P. R. Cummins (2005) Contiguous rupture areas of two Nankai Trough earthquakes revealed by high resolution tsunami waveform inversion, Geophys. Res. Lett., 32(8), L08305, doi:10.1029/2004GL022320.
  • Bird (1984) Hydration-phase diagrams and friction of montmorillonite under laboratory and geologica conditions, with implications for shale compaction, slope stability, and strength of fault gouge, Tectonophysics, 107, 235260.
  • Bradbury, K. K., J., Evans, J. S., Chester, F. M., Chester, and D. L. Kirschner (2011), Lithology and internal structure of the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole, Earth and Plan. Sci. Lett., 310, 1–2, 131144.
  • Bradley W. F. (1945), Molecular association between montmorillonite and some polyfunctional organic liquids, J. Am. Chem. Soc., 67, 975981.
  • Brindley G. W., and G. Brown (1980), X-ray diffraction procedure for clay mineral identification, in Crystal Structures of clay minerals and their X-ray identification, edited by G. W. Brindley and G. Brown, Mineralogical Society, London, pp. 495.
  • Carpenter, B. M., C., Marone, and D. Saffer (2009), Frictional Behavior of Materials in the 3D SAFOD Volume, Geophys. Res. Lett., 36, L05302. doi: 10.1029/2008GL036660.
  • Carpenter, B. M., C., Marone, and D. M. Saffer (2011), Frictional strength of the san andreas fault from laboratory measurements of SAFOD drill samples, Nat. Geosci.. 10.1038/ngeo1089.
  • Collettini, C., A., Niemeijer, C., Viti, S. A. F., Smith, and Marone C. (2011), Fault zone fabric and fault weakness, Earth and Plan. Sci. Lett., 311, 316327. 10.1016/j.epsl.2011.09.020.
  • Colten-Bradley, V. A. (1987), Role of pressure in smectite dehydration: effects on geopressures and smectite-to-illite transformation, Am.Assoc.Pet.Geol.Bull., 71, 14141427.
  • Cuadros, J. (1997), Interlayer cation effects on the hydration state of smectite, Am. J. Sci., 297, 829841.
  • Drits, V. A., T. V., Varakina, B. A., Sakharov, and A. Plancon (1994), Simple technique for identification of one-dimensional powder x-ray diffraction patterns for mixed-layer illite-smectites and other interstratified minerals, Clays and Clay Miner., 42(4), 382390.
  • Ferrage, E., C. A., Kirk, G. Cressey, and J. Cuadros (2007a), Dehydration of Ca-montmorillonite at the crystal scale, Part I: Structure evolution, Am. Mineral., 92, 9941006.
  • Ferrage, E., B., Lanson, B. A. Sakharov, N., Geoffroy, E., Jacquot, and V. A. Drits (2007b), Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location, Am. Mineral., 92, 17311743.
  • Fitts, T. G., and K. M. Brown (1999), Stress-induced smectite dehydration: ramifications for patterns of freshening and fluid expulsion in the N. Barbados accretionary wedge, Earth Plan. Sci. Lett., 172, 179197.
  • Harris, R. N., F., Schmidt-Schierhorn, and G. Spinelli (2011), Heat flow along the NanTroSEIZE transect: Results from IODP Expeditions 315 and 316 offshore the Kii Peninsula, Japan, G-cube, 12, 8. doi:10.1029/2011GC003593.
  • Hartzell, S. H., P. Liu, and C. Mendoza (1996), The 1994 Northridge, California, earthquake: Investigation of rupture velocity, rise time, and high-frequency radiation, J. Geophys. Res., 101(B9), 2009120108.
  • Hayman N. W., T., Byrne, K., Kanagawa, K., Toshiya, C. M., Browne, A. M., Schleicher, G., Huftile, and L. McNeill (2012), Core constraints on the structural evolution of the inner wedge and sub-forearc basin, Nankai margin, Japan, Earth Plan. Sci. Lett., 353–354, 163172.
  • Hickman, S., et al. (2008), Structure and composition of the San Andreas fault in central California: Recent results from SAFOD sample analyses: EOS (Transactions, American Geophyscal Union), 89, Fall meeting supplement, TT53F-01.
  • Hickman S. H., M. D., Zoback, and W. L. Ellsworth (2004), Introdcution to special section: Preparing for the San Andreas Fault Observatory at Depths, Geophys. Res. Lett., 31, L12S01. doi: 10.1029/2004GL020668.
  • Holdsworth, R. E., E. W. E., van Diggeln, C. J., Spiers, J. H. P., de Bresser, R. J., Walker, and L. Bowen (2011), Fault rocks from the SAFOD core samples: implications for weakening at shallow depths along the San Andreas Fault, California, J. Struct. Geol., 33, 132144.
  • Hsieh, Y. P. (1989), Effects of relative humidity on the basal expansion of Mg-smectite equilibrated with ethylene glycol at low vapor pressure, Clays and Clay Miner., 37, 5,459463.
  • Ikari, M., D. M., Saffer, and C. Marone (2009), Frictional and Hydrologic Properties of Clay-Rich Fault Gouge, J. Geophys. Res., 114, B05409. doi:10.1029/2008JB006089.
  • Ikari, M., D. M., Saffer, and C. Marone (2007), Effect of Hydration State on the Frictional Properties of Montmorillonite-based Fault Gouge, J. Geophys. Res., 112, B06423. 10.1029/2006JB004748.
  • Iwasaki, T., and T. Watanabe (1988), Distribution of Ca and Na ions in dioctahedral smectits and interstratified dioctahedral mica/smectite, Clays and Clay Miner., 36, 7382.
  • Kinoshita, M., H., Tobin, J., Ashi, G., Kimura, S., Lallemant, E. J., Screaton, D., Curewitz, H., Masago, K. T., Moe, and the Expedition 314/315/316 Scientists (2009), Expedition 315 site C0002, Proceedings of the Integrated Ocean Drilling Program, Volume 314/315/316, Volume 314/315/316. doi:10.2204/iodp.proc.314315316.205.2011.
  • Klug H. P., and L. E. Alexander (1974), X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed, John Wiley & Sons, New York, pp. 966.
  • Laird D. A. (2006), Influence of layer charge on swelling of smectites, Appl. Clay Sci., 34, 7487.
  • Lockner D. A., C., Morrow, D., Moore, and S. Hickman (2011), Low strength of deep San Andreas fault gouge from SAFOD core, Nature, 472. doi:10.1038/nature09927.
  • Mac Ewan, D. M. C. (1948), Complexes of clays with organic compounds. I. Complex formation between montmorillonite and halloysite and certain organic liquids, Trans. Farad. Soc., 44, 349367.
  • Mooney R. W., A. G., Keenan, and L. A. Wood (1952), Adsorption of water vapour by montmorillonite. Heat of desorption and application of BET theory, J. Am. Chem. Soc., 74(6), 13671370.
  • Moore, D. M., and R. C. Reynolds Jr. (1997), X-Ray Diffraction and the Identification and analysis of Clay Minerals, 2nd edition, New York, Oxford University Press, pp. 378.
  • Moore D. E., and D. A. Lockner (2007), Friction of smectite clay montmorillonite, in The Seismogenic Zone of Subduction Thrust Faults, edited by T. Dixon and C. Moore, Columbia University Press, pp. 317345.
  • Morrow C., J., Solum, S., Tembe, D., Lockner, and T. F. Wong (2007), Using drill cutting separates to estimate the strength of a narrow shear zone at SAFOD, Geophys. Res. Lett., 34, 11, L11301.
  • Mosser-Ruck R., K., Devineau, D., Charpentier, and M. Cathelineau (2005), Effects of ethylene glycol saturation protocols on XRD patterns: a critical review and discussion, Clays and Clay Miner., 53, 6, 631638, doi: 10.1346/CCMN.2005.0530609.
  • Mueller-Vonmoos, M., and E. E. Kohler (1993), Geotechnik und Entsorgung, in Tonminerale und Tone, edited by J. K. And Lagaly G., Steinkopff Verlag, Darmstadt, 312357.
  • Petschick R. (2010) McDiff Software Version 4.2.6, Johann Wolfgang Goethe Unviersitaet, Frankfurt am Main. http://www.geol-pal.uni-frankfurt.de/Staff/Homepages/Petschick/classicsoftware.html.
  • Saffer, D., L., McNeill, T., Byrne, E., Araki, S., Toczko, N., Eguchi, K., Takahashi, and the Expedition 319 Scientists (2010), Proc. IODP, 319: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).
  • Saffer D., and C. Marone (2003), Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts, Earth Plan. Sci. Lett., 215, 219235.
  • Schleicher A. M., B. A., van der Pluijm, and L. N., Warr (2010), Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California, Geology, 38, 7, 667670.
  • Schleicher A. M., B. A., van der Pluijm, and L. N. Warr (2012), Chlorite-smectite clay minerals and fault behavior: New evidence from the San Andreas Fault Observatory at Depth (SAFOD) core, Lithosphere L158.1.
  • Tessier D., M., Dardaine, A., Beaumont, and A. M. Jaunet (1998), Swelling pressure and microstructure of activated swelling clay with temperature, Clay Min., 33, 255267.
  • Tobin H., and M. Kinoshita (2006), NanTroSEIZE: the IODP Nankai Trough seismogenic zone experiment, Sci. Drill., 2, 2327. doi: 10.2204/iodp.sd.2.06.2006.
  • Williams, C. F., F. V., Grubb, and S. P., Galanis, Jr., (2004), Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas fault, Geophys. Res. Lett., 31, L15S14.
  • Wu, F. T., L., Blatter, and H. Roberson, (1975), Clay gouges in the San Andreas fault system and their possible implications, Pure and Appl. Geophys., 113, 8795. doi:10.1007/BF01592901.
  • Zoback M. D., S. H., Hickman, and B. Ellsworth (2011), Scientific drilling into the San Andreas fault zone, An overview of SAFOD's first five years, Sci. Reports, doi:10.2204/iodp.sd.11.02.2011.