SEARCH

SEARCH BY CITATION

References

  • Allan, J. R., and R. K. Matthews (1982), Isotope signatures associated with early meteoric diagenesis, Sedimentology, 29(6), 797817, doi:10.1111/j.1365-3091.1982.tb00085.x.
  • Al-Ghamdi, N., and F. J. Read (2010), Facies-based sequence-stratigraphic framework of the Lower Cretaceous rudist platform, Shu'aiba Formation, Saudi Arabia, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al., pp. 367410, Gulf PetroLink, Bahrain.
  • Al-Husseini, M. I., and R. K. Matthews (2010), Tuning Late Barremian–Aptian Arabian Plate and global sequences with orbital periods, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ. vol. 4, edited by F. S. P. van Buchem et al., pp. 199228, Gulf PetroLink, Bahrain.
  • Ando, A., T. Kakegawa, R. Takashima, and T. Saito (2002), New perspective on Aptian carbon isotope stratigraphy: Data from δ13C records of terrestrial organic matter, Geology, 30(3), 227230, doi:10.1130/0091-7613(2002)030<0227:NPOACI>2.0.CO;2.
  • Ando, A., K. Kaiho, H. Kawahata, and T. Kakegawa (2008), Timing and magnitude of early Aptian extreme warming: Unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 260(3–4), 463476, doi:10.1016/j.palaeo.2007.12.007.
  • Arnaud-Vanneau, A., and H. Arnaud (1990), Hauterivian to Lower Aptian carbonate shelf sedimentation and sequence stratigraphy in the Jura and northern Subalpine chains (southeastern France and Swiss Jura), in Carbonate Platforms: Facies, Sequences and Evolution, Spec. Publ. Intl. Ass. Sedimentol., no. 9, edited by M. E. Tucker et al., pp. 203234, Blackwell Sci. Publ., Oxford, doi:10.1002/9781444303834.ch8.
  • Arthur, M. A., H. C. Jenkyns, H.-J. Brumsack, and S. O. Schlanger (1990), Stratigraphy, geochemistry, and paleoceanography of organic-carbon-rich Cretaceous sequences, in Cretaceous Resources, Events and Rhythms, NATO ASI Ser., vol. 304, edited by R. N. Ginsburg and B. Beaudoin, pp. 75119, Kluwer Acad. Publ., Dordrecht.
  • Asahara, Y., H. Ishiguro, T. Tanaka, K. Yamamoto, K. Mimura, M. Minami, and H. Yoshida (2006), Application of Sr isotopes to geochemical mapping and provenance analysis: the case of Aichi Prefecture, central Japan. Appl. Geochem., 21(3), 419436, doi:10.1016/j.apgeochem.2005.12.003.
  • Asahara, Y., T. Tanaka, H. Kamioka, A. Nishimura, and T. Yamazaki (1999), Provenance of the north Pacific sediments and process of source material transport as derived from Rb–Sr isotopic systematics. Chem. Geol., 158(3–4), 271291, doi:10.1016/S0009-2541(99)00056-X.
  • Beerling, D. J., M. R. Lomas, and D. R. Gröcke (2002), On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events, Am. J. Sci., 302(1), 2849, doi:10.2475/ajs.302.1.28.
  • Bellanca, A., E. Erba, R. Neri, I. P. Silva, M. Sprovieri, F. Tremolada, and D. Verga (2002), Palaeoceanographic significance of the Tethyan ‘Livello Selli’ (Early Aptian) from the Hybla Formation, northwestern Sicily: biostratigraphy and highresolution chemostratigraphic records, Palaeogeogr. Palaeoclimatol. Palaeoecol., 185(1–2), 175196, doi:10.1016/S0031-0182(02)00299-7.
  • Blättler C. L., H. C. Jenkyns, L. M. Reynard, and G. M. Henderson (2011), Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes, Earth Planet. Sci. Lett., 309(1–2), 7788, doi:10.1016/j.epsl.2011.06.029.
  • Bosellini, A., M. Morsilli, and C. Neri (1999), Long-term event stratigraphy of the Apulia Platform margin (Upper Jurassic to Eocene, Gargano, southern Italy), J. Sedim. Res., 69(6), 12411252, doi:10.2110/jsr.69.124.
  • Bottini, C., A. S. Cohen, E. Erba, H. C. Jenkyns, and A. L. Coe (2012), Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a, Geology, 40(7), 583586, doi:10.1130/G33140.1.
  • Bown, P. R., D. C. Rutledge, J. A. Crux, and L. T. Gallagher (1998), Lower Cretaceous, in Calcareous nannofossil biostratigraphy, British Micropalaeontological Society Publication Series, edited by P. R. Bown, pp. 86131, Chapman & Hall, London.
  • Bralower, T. J., R. M. Leckie, W. V. Sliter, and H. R. Thierstein (1995), An integrated Cretaceous microfossil biostratigraphy, in Geochronology, Time Scales and Global Stratigraphic Correlation, SEPM Spec. Publ., vol. 54, edited by W. A. Berggren et al., pp. 6579, SEPM, Tulsa, Oklahoma.
  • Bralower, T. J., P. D. Fullager, C. K. Paull, G. S. Dwyer, and R. M. Leckie (1997), Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections, Geol. Soc. Amer. Bull., 109(11), 14211442, doi:10.1130/0016-7606(1997)109<1421:MCSISO>2.3.CO;2.
  • Bralower, T. J., E. CoBabe, B. Clement, W. V. Sliter, C. L. Osburn, and J. Longoria (1999), The record of global change in Mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico, J. Foram. Res., 29(4), 418437.
  • Burla, S., U. Heimhofer, P. A. Hochuli, H. Weissert, and P. Skelton (2008), Changes in sedimentary patterns of coastal and deep-sea successions from the North Atlantic (Portugal) linked to Early Cretaceous environmental change, Palaeogeogr. Palaeoclimatol. Palaeoecol., 257(1–2), 3857, doi:10.1016/j.palaeo.2007.09.010.
  • Danelian, T., H. Tsikos, S. Gardin, F. Baudin, J.-P. Bellier, and L. Emmanuel (2004), Global and regional palaeoceanographic changes as recorded in the Mid-Cretaceous (Aptian-Albian) sequence of the Ionian zone (NW Greece), J. Geol. Soc. London, 161(4), 703709, doi:10.1144/0016-764903-088.
  • de Gea, G. A., J. M. Castro, R. Aguado, P. A. Ruiz-Ortiz, and M. Company (2003), Lower Aptian carbon isotope stratigraphy from a distal carbonate shelf setting: the Cau section, Prebetic zone, SE Spain, Palaeogeogr. Palaeoclimatol. Palaeoecol., 200(1–4), 207219, doi:10.1016/S0031-0182(03)00451-6.
  • Denison, R. E., R. B. Koepnick, A. Fletcher, M. W. Howell, and W. S. Callaway (1994), Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones, Chem. Geol., 112(1–2), 131143, doi:10.1016/0009-2541(94)90110-4.
  • Droste, H. J. (2010), Sequence-stratigraphic framework of the Aptian Shu'aiba Formation in Oman, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ. vol. 4, edited by F. S. P. van Buchem et al., pp. 229283, Gulf PetroLink, Bahrain.
  • Dumitrescu, M., and S. C. Brassell (2006), Compositional and isotopic characteristics of organic matter for the early Aptian oceanic anoxic event at Shatsky Rise, ODP Leg 198, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235(1–3), 168191, doi:10.1016/j.palaeo.2005.09.028.
  • Dupraz, C., and A. Strasser (1999), Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains), Facies, 40(1), 101130, doi:10.1007/BF02537471.
  • Erba, E. (1994), Nannofossils and superplumes: The Early Aptian “nannoconid crisis”, Paleoceanography, 9(3), 483501, doi:10.1029/94PA00258.
  • Erba, E. (2004), Calcareous nannofossils and Mesozoic oceanic anoxic events, Mar. Micropaleontol., 52(1–4), 85106, doi:10.1016/j.marmicro.2004.04.007.
  • Erba, E., and F. Tremolada (2004), Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia, Paleoceanography, 19(3), PA1008, doi:10.1029/2003PA000884.
  • Erba, E., J. E. T. Channell, M. Claps, C. Jones, R. L. Larson, B. N. Opdyke, I. P. Silva, A. Riva, G. Salvini, and S. Torricelli (1999), Integrated stratigraphy of the Cismon APTICORE (Southern Alps, Italy): a “reference section” for the Barremian–Aptian interval at low latitudes, J. Foram. Res., 29(4), 371391.
  • Erba, E., C. Bottini, H. J. Weissert, and E. Keller (2010), Calcareous nannoplankton response to surface-water acidification around Ocean Anoxic Event 1a, Science, 329(5990), 428432, doi:10.1126/science.1188886.
  • Erbacher, J., J. Thurow, and R. Littke (1996), Evolution patterns of radiolarian and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments, Geology, 24(6), 499502, doi:10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2.
  • Föllmi, K. B., H. Weissert, M. Bisping, and H. Funk (1994), Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin, Geol. Soc. Amer. Bull., 106(6), 729746, doi:10.1130/0016-7606(1994)106<0729:PCISAC>2.3.CO;2.
  • Föllmi, K. B., A. Godet, S. Bodin, and P. Linder (2006), Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record, Paleoceanography, 21(4), PA4211, doi:10.1029/2006PA001313.
  • Funk, H. P., K. B. Föllmi, and H. Mohr (1993), Evolution of the Tithonian-Aptian carbonate platform along the northern Tethyan margin, eastern Helvetic Alps, in Cretaceous Carbonate Platforms, Amer. Assoc. Petrol. Geol. Mem, no. 56, edited by J. A. T. Simo et al., pp. 387408, Amer. Assoc. Petrol. Geol., Tulsa.
  • Gili, E., J.-P. Masse, and P. W. Skelton (1995), Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms, Palaeogeogr. Palaeoclimatol. Palaeoecol., 118(3–4), 245267, doi:10.1016/0031-0182(95)00006-X.
  • Gradstein, F. M., J. G. Ogg, and A. G. Smith (Eds.) (2004), A Geologic Time Scale 2004, p. 610, Cambridge University Press, Cambridge.
  • Grauges, A., J. A. Moreno-Bedmar, and R. Martínez (2010), Desmocerátidos (Ammonoidea) del Aptiense Inferior (Cretácico Inferior) de la subcuenca de Oliete, Cordillera Ibérica Oriental (Teruel, España). [Lower Aptian (Lower Cretaceous) desmoceratids (Ammonoidea) of the Oliete sub-basin, Iberian Range (Teruel, Spain).] Revista Española de Paleontología, 25(1), 718.
  • Graziano, R. (1999), The Early Cretaceous drowning unconformities of the Apulia carbonate platform (Gargano Promontory, southern Italy): local fingerprints of the global palaeoceanographic events, Terra Nova, 11(6), 245250, doi:10.1046/j.1365-3121.1999.00256.x.
  • Grötsch, J., I. Billing, and V. Vahrenkamp (1998), Carbon-isotope stratigraphy in shallow-water carbonates: implications for Cretaceous black-shale deposition, Sedimentology, 45(4), 623634, doi:10.1046/j.1365-3091.1998.00158.x.
  • Haq, B. U., J. Hardenbol, and P. R. Vail (1988), Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Sea-Level Changes: An Integrated Approach, Soc. Econ. Palaeontol. Mineral. Spec. Publ.,no. 42, edited by C. K. Wilgus et al., pp. 71108, Soc. Econ. Palaeontol. Mineral., Tulsa.
  • Heimhofer, U., P. A. Hochuli, J. O. Herrle, N. Andersen, and H. Weissert (2004), Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France), Earth Planet. Sci. Lett., 223(3–4), 303318, doi:10.1016/j.epsl.2004.04.037.
  • Heldt, M., M. Bachmann, and J. Lehmann (2008), Microfacies, biostratigraphy, and geochemistry of the hemipelagic Barremian–Aptian in north-central Tunisia: influence of the OAE 1a on the southern Tethys margin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 261(3–4), 246260, doi:10.1016/j.palaeo.2008.01.013.
  • Hillgärtner, H. (2010), Anatomy of a microbially constructed, high-energy, ocean-facing carbonate platform margin (earliest Aptian, northern Oman Mountains), in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al., pp. 285300, Gulf PetroLink, Bahrain.
  • Hillgärtner, H., F. S. P. van Buchem, F. Gaumet, P. Razin, B. Pittet, J. Grötsch, and H. J. Droste (2003), The Barremian-Aptian evolution of the eastern Arabian carbonate platform margin (northern Oman), J. Sedim. Res., 73(5), 756773, doi 10.1306/030503730756.
  • Hohenegger J., E. Yordanova, Y. Nakano, and F. Tatzreiter (1999), Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan, Mar. Micropaleontol., 36(2–3), 109168, doi:org/:10.1016/S0377-8398(98)00030-9.
  • Holser, W. T., M. Schidlowski, F. T. Mackenzie, and J. B. Maynard (1988), Biogeochemical cycles of carbon and sulfur, in Chemical Cycles in the Evolution of the Earth, edited by C. B. Gregor et al., pp. 105173, Wiley, New York.
  • Howarth, R. J., and J. M. McArthur (1997), Statistics for strontium isotope stratigraphy: A robust LOWESS fit to the marine strontium isotope curve for the period 0 to 206 Ma, with look-up table for the derivation of numerical age, J. Geol., 105(4), 441456, doi:10.1086/515938.
  • Hu, X., K. Zhao, I. O. Yilmaz, and Y. Li (2012), Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey, Cret. Res., 38, 4051, doi:10.1016/j.cretres.2012.01.007.
  • Huck, S., N. Rameil, T. Korbar, U. Heimhofer, T. D. Wieczorek, and A. Immenhauser (2010), Latitudinally different responses of Tethyan shoal-water carbonate systems to the Early Aptian oceanic anoxic event (OAE 1a), Sedimentology, 57(7), 15851614, doi:10.1111/j.1365-3091.2010.01157.x.
  • Huck, S., U. Heimhofer, N. Rameil, S. Bodin, and A. Immenhauser (2011), Strontium and carbon-isotope chronostratigraphy of Barremian–Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a, Earth Planet. Sci. Lett., 304(3–4), 547558, doi:10.1016/j.epsl.2011.02.031.
  • Hughes, G. W. (2000), Bioecostratigraphy of the Shu'aiba Formation, Shaybah field, Saudi Arabia, GeoArabia, 5(4), 545578.
  • Immenhauser, A., W. Schlager, S. J. Burns, R. W. Scott, T. Geel, J. Lehmann, S. van der Gaast, and L. J. A. Bolder-Schruwer (1999), Late Aptian to Late Albian sea-level fluctuations constrained by geochemical and biological evidence (Nahr Umr Formation, Oman), J. Sedim. Res., 69(2), 434466, doi:10.2110/jsr.69.434.
  • Immenhauser, A., G. D. Porta, J. A. M. Kenter, and J. R. Bahamonde (2003), An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O, Sedimentology, 50(5), 953959, doi:10.1046/j.1365-3091.2003.00590.x.
  • Immenhauser, A., et al. (2004), Barremian-lower Aptian Qishn Formation, Haushi-Huqf area, Oman: a new outcrop analogue for the Kharaib/Shu'aiba reservoirs, GeoArabia, 9(1), 153194.
  • Immenhauser, A., H. Hillgärtner, and E. van Bentum (2005), Microbial-foraminiferal episodes in the Early Aptian of the southern Tethyan margin: ecological significance and possible relation to oceanic anoxic event 1a, Sedimentology, 52(1), 7799, doi:10.1111/j.1365-3091.2004.00683.x.
  • Immenhauser, A., C. Holmden, and W. P. Patterson (2008), Interpreting the carbon-isotope record of ancient shallow epeiric seas: Lessons from the recent, in Dynamics of Epeiric Seas, Geol. Assoc. Canada Spec. Publ., vol. 48, edited by B. R. Pratt and C. Holmden, pp. 135174, Geol. Assoc. Canada, St. John's.
  • Jacobsen, S. B., and A. J. Kaufman (1999), The Sr, C and O isotopic evolution of Neoproterozoic seawater, Chem. Geol., 161(1–3), 3757, doi:10.1016/S0009-2541(99)00080-7.
  • Jahren, A. H., N. C. Arens, G. Sarmiento, J. Guerrero, and R. Amundson (2001), Terrestrial record of methane hydrate dissociation in the Early Cretaceous, Geology, 29(2), 159162, doi:10.1130/0091-7613(2001)029<0159:TROMHD>2.0.CO;2.
  • Jenkyns, H. C. (1995), Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, mid-Pacific Mountains, in Proc. ODP, Sci. Res., vol. 143, edited by E. L. Winterer et al., pp. 99104, College Station, Texas.
  • Jenkyns, H. C., and P. A. Wilson (1999), Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots: Relics from a greenhouse Earth, Amer. J. Sci., 299(5), 341392, doi:10.2475/ajs.299.5.341.
  • Jenkyns, H. C. (2010), Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004, doi:10.1029/2009GC002788.
  • Jones, C. E., and H. C. Jenkyns (2001), Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous, Am. J. Sci., 301(2), 112149, doi:10.2475/ajs.301.2.112.
  • Kuhnt, W., A. Holbourn, and M. Moullade (2011), Transient global cooling at the onset of early Aptian oceanic anoxic event (OAE) 1a, Geology, 39(4), 323326, doi:10.1130/G31554.1.
  • Kump, L. R., and M. A. Arthur (1999), Interpreting carbon-isotope excursions: carbonates and organic matter, Chem. Geol., 161(1–3), 181198, doi:10.1016/S0009-2541(99)00086-8.
  • Kuroda, J., M. Tanimizu, R. S. Hori, K. Suzuki, N. O. Ogawa, M. L. G. Tejada, M. F. Coffin, R. Coccioni, E. Erba, and N. Ohkouchi (2011), Lead isotopic record of Barremian-Aptian marine sediments: Implications for large igneous provinces and the Aptian climatic crisis, Earth Planet. Sci. Lett., 307(1–2), 126134, doi:10.1016/j.epsl.2011.04.021.
  • Langer, M. R., and J. H. Lipps (2003), Foraminiferal distribution and diversity, Madang Reef and Lagoon, Papua New Guinea, Coral Reefs, 22(2), 143154, doi:10.1007/s00338-003-0298-1.
  • Larson, R. L., and E. Erba (1999), Onset of the Mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses, Paleoceanography, 14(6), 663678, doi:10.1029/1999PA900040.
  • Li, Y.-X., T. J. Bralower, I. P. Montañez, D. A. Osleger, M. A. Arthur, D. M. Bice, T. D. Herbert, E. Erba, and I. Premoli Silva (2008), Toward an orbital chronology for the early Aptian oceanic anoxic event (OAE1a, ~120 Ma), Earth Planet. Sci. Lett., 271(1–4), 88100, doi:10.1016/j.epsl.2008.03.055.
  • Malinverno, A., E. Erba, and T. D. Herbert (2010), Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE, Paleoceanography, 25, PA2203, doi:10.1029/2009PA001769.
  • Masse, J.-P., J. Borgomano, and S. Al Maskiry (1998), A platform-to-basin transition for lower Aptian carbonates (Shuaiba Formation) of the northeastern Jebel Akhdar (Sultanate of Oman), Sedim. Geol., 119(3–4), 297309, doi:10.1016/S0037-0738(98)00068-2.
  • Masse, J.-P. (2002), Integrated stratigraphy of the lower Aptian and applications to carbonate platforms: a state of the art, in North African Cretaceous Carbonate Platform Systems, NATO Sci. Ser., IV. Earth Env. Sci., vol. 28, edited by E. Gili et al., pp. 203214, Kluwer Acad. Publ., Dordrecht, the Netherlands.
  • McArthur, J. M., R. J. Howarth, and T. R. Bailey (2001), Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age, J. Geol., 109(2), 155170, doi:10.1086/319243.
  • Méhay, S., C. E. Keller, S. M. Bernasconi, H. Weissert, E. Erba, C. Bottini, and P. A. Huchuli (2009), A volcanic CO2 pulse triggered the Cretaceous oceanic anoxic event 1a and a biocalcification crisis, Geology, 37(9), 819822, doi:10.1130/G30100A.1.
  • Menegatti, A. P., H. Weissert, R. S. Brown, R. V. Tyson, P. Farrimond, A. Strasser, and M. Caron (1998), High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys, Paleoceanography, 13(5), 530545, doi:10.1029/98PA01793.
  • Millán, M. I., H. J. Weissert, P. A. Fernández-Mendiola, and J. García-Mondéjar (2009), Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain), Earth Planet. Sci. Lett., 287(3–4), 392401, doi:10.1016/j.epsl.2009.08.023.
  • Misumi, K., Y. Yamanaka, and E. Tajika (2009), Numerical simulation of atmospheric and oceanic biogeochemical cycles to an episodic CO2 release event: Implications for the cause of mid-Cretaceous Ocean Anoxic Event-1a, Earth Planet. Sci. Lett., 286(1–2), 316323, doi:10.1016/j.epsl.2009.06.045.
  • Moreno-Bedmar, J. A., M. Company, T. Bover-Arnal, R. Salas, G. Delanoy, F. J.-M. R. Maurrasse, A. Grauges, and R. Martínez (2010), Lower Aptian ammonite biostratigraphy in the Maestrat Basin (Eastern Iberian Chain, Eastern Spain). A Tethyan transgressive record enhanced by synrift subsidence, Geol. Acta, 8(3), 281299, doi:10.1344/105.000001534.
  • Murris, R. J. (1980), Middle East: Stratigraphic evolution and oil habitat, Amer. Assoc. Petrol. Geol. Bull., 64(5), 597618, doi:10.1306/2F918A8B-16CE-11D7-8645000102C1865D.
  • Najarro, M., I. Rosales, and J. Martín-Chivelet (2011a), Major palaeoenvironmental perturbation in an Early Aptian carbonate platform: prelude of the Oceanic Anoxic Event 1a?, Sedim. Geol., 235(1–2), 5071, doi:10.1016/j.sedgeo.2010.03.011.
  • Najarro, M., I. Rosales, J. A. Moreno-Bedmar, G. A. de Gea, E. Barrón, M. Company, and G. Delanoy (2011b), High-resolution chemo- and biostratigraphic records of the Early Aptian oceanic anoxic event in Cantabria (N Spain): Palaeoceanographic and palaeoclimatic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299(1–2), 137158, doi:10.1016/j.palaeo.2010.10.042.
  • Patterson, W. P., and L. M. Walters (1994), Depletion of 13C in seawater ΣCO2 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates, Geology, 22(10), 885888, doi:10.1130/0091-7613(1994)022<0885:DOCISC>2.3.CO;2.
  • Pierson, B. J., G. P. Eberli, K. Al Mehsin, S. Al Menhali, G. Warrlich, H. J. Droste, F. Maurer, J. Whitworth, and D. Drysdale (2010), Seismic stratigraphy and depositional history of the Upper Shu'aiba (Late Aptian) in the UAE and Oman, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al., pp. 411444, Gulf PetroLink, Bahrain.
  • Pittet, B., F. S. P. van Buchem, H. Hillgärtner, P. Razin, J. Grötsch, and H. J. Droste (2002), Ecological succession, palaeoenvironmental change, and depositional sequences of Barremian–Aptian shallow-water carbonates in northern Oman, Sedimentology, 49(3), 555581, doi:10.1046/j.1365-3091.2002.00460.x.
  • Price, G. D. (2003), New constraints upon isotope variation during the early Cretaceous (Barremian–Cenomanian) from the Pacific Ocean, Geol. Mag., 140(5), 513522, doi:10.1017/S0016756803008100.
  • Rameil, N., A. Immenhauser, G. Warrlich, H. Hillgärtner, and H. J. Droste (2010), Morphological patterns of Aptian Lithocodium–Bacinella geobodies: relation to environment and scale, Sedimentology, 57(3), 883911, doi:10.1111/j.1365-3091.2009.01124.x.
  • Romanek, C. S., E. L. Grossman, and J. W. Morse (1992), Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate, Geochim. Cosmochim. Acta, 56(1), 419430, doi:10.1016/0016-7037(92)90142-6.
  • Roth, P. H. (1978), Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean, in Initial Report of the Deep Sea Drilling Project, vol. 44, edited by W. E. Benson, R. E. Sheridan et al., pp. 731759, U. S. Gov. Print. Office, Washington, D. C.
  • Ruiz-Ortiz, P. A., and J. M. Castro (1998), Carbonate depositional sequences in shallow to hemipelagic platform deposits; Aptian, Prebetic of Alicante (SE Spain), Bull. Soc. Géol. France, 169(1), 2133.
  • Sato, T., S. Yuguchi, T. Takayama, and K. Kameo (2004), Drastic change in the geographical distribution of the cold-water nannofossil Coccolithus pelagicus (Wallich) Schiller at 2.74 Ma in the late Pliocene, with special reference to glaciation in the Arctic Ocean, Mar. Micropaleontol., 52(1–4), 181193, doi:10.1016/j.marmicro.2004.05.003.
  • Schlanger, S. O., and H. C. Jenkyns (1976), Cretaceous oceanic anoxic events: causes and consequences, Geol. Mijnb., 55(3–4), 179184.
  • Schroeder, R., F. S. P. van Buchem, A. Cherchi, D. Baghbani, B. Vincent, A Immenhauser, and B. Granier (2010), Revised orbitolinid biostratigraphic zonation for the Barremian–Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al., pp. 4996, Gulf PetroLink, Bahrain.
  • Sharland, P. R., R. Archer, D. M. Casey, R. B. Davies, S. H. Hall, A. P. Heward, A. D. Horbury, and M. D. Simmons (2001), Sequence Stratigraphy of the Arabian Plate, GeoArabia Spec. Publ., vol. 2, p. 371, Gulf PetroLink, Bahrain.
  • Skelton, P. W., R. A. Spicer, S. P. Kelley, and I. Gilmour (2003), The Cretaceous World, p. 360, Cambridge University Press, Cambridge.
  • Steuber, T. (1999), Isotopic and chemical intra-shell variations in low-Mg calcite of rudist bivalves (Mollusca-Hippuritacea): disequilibrium fractionations and Late Cretaceous seasonality, Int. J. Earth Sci., 88(3), 551570, doi:10.1007/s005310050284.
  • Strohmenger, C. J., T. Steuber, A. Ghani, D. G. Barwick, S. H. A. Al Mazrooei, and N. O. Al Zaabi (2010), Sedimentology and chemostratigraphy of the Hawar and Shu'aiba depositional sequences, Abu Dhabi, United Arab Emirates, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al., pp. 341365, Gulf PetroLink, Bahrain.
  • Suzuki, K., Y. Asahara, K. Miura, and T. Tanaka (2012), Another sea area separated from the Panthalassic Ocean in the Norian, the Late Triassic: The lowest Sr isotopic composition of the Ishimaki limestone in central Japan, Chem. Erde, 72(1), 7784, doi:10.1016/j.chemer.2011.06.004.
  • Suzuki, Y., Y. Iryu, S. Inagaki, T. Yamada, S. Aizawa, and D. A. Budd (2006), Origin of atoll dolomites distinguished by geochemistry and crystal chemistry: Kita-daito-jima, northern Philippine Sea, Sedim. Geol., 183(3–4), 181202, doi:10.1016/j.sedgeo.2005.09.016.
  • Swart, P. K., and G. Eberli (2005), The nature of the δ13C of periplatform sediments: Implications for stratigraphy and the global carbon cycle, Sedim. Geol., 175(1–4), 115129, doi:10.1016/j.sedgeo.2004.12.029.
  • Tejada, M. L. G., K. Suzuki, J. Kuroda, R. Coccioni, J. J. Mahoney, N. Ohkouchi, T. Sakamoto, and Y. Tatsumi (2009), Ontong Java Plateau eruption as a trigger for the Early Aptian oceanic anoxic event, Geology, 37(9), 855858, doi:10.1130/G25763A.1.
  • Vahrenkamp, V. C. (1996), Carbon isotope stratigraphy of the Upper Kharaib and Shu'aiba formations: implications for the Early Cretaceous evolution of the Arabian Gulf Region. Amer. Assoc. Petrol. Geol. Bull., 80(5), 647662, doi:10.1306/64ED8868-1724-11D7-8645000102C1865D.
  • Vahrenkamp, V. C. (2010), Chemostratigraphy of the Lower Cretaceous Shu'aiba Formation: A δ13C reference profile for the Aptian Stage from the southern Neo-Tethys Ocean, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al. pp. 107137, Gulf PetroLink, Bahrain.
  • van Breugel, Y., S. Schouten, H. Tsikos, E. Erba, G. D. Price, and J. S. S. Damsté (2007), Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the Early Aptian oceanic anoxic event 1a: Evidence for the release of 13C-depleted carbon into the atmosphere, Paleoceanography, 22(1), PA1210, doi:10.1029/2006PA001341.
  • van Buchem, F. S. P., B. Pittet, H. Hillgärtner, J. Grotsch, A. I. Al Mansouri, I. M. Billing, H. J. Droste, W. H. Oterdoom, and M. van Steenwinkel (2002), High-resolution sequence stratigraphic architecture of Barremian/Aptian carbonate systems in Northern Oman and the United Arab Emirates (Kharaib and Shu'aiba Formations), GeoArabia, 7(3), 461500.
  • van Buchem, F. S. P., M. I. Al Husseini, F. Maurer, H. J. Droste, and L. A. Yose (2010), Sequence-stratigraphic synthesis of the Barremian–Aptian of the eastern Arabian Plate and implications for the petroleum habitat, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al. pp. 948, Gulf PetroLink, Bahrain.
  • Vilas, L., J.-P. Masse, and C. Arias (1995), Orbitolina episodes in carbonate platform evolution: the early Aptian model from SE Spain, Palaeogeogr. Palaeoclimatol. Palaeoecol., 119(1–2), 3545, doi:10.1016/0031-0182(95)00058-5.
  • Weissert, H., and E. Erba, (2004), Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record, J. Geol. Soc. London, 161(4), 695702, doi:10.1144/0016-764903-087.
  • Wissler, L., H. Funk, and H. Weissert (2003), Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels, Palaeogeogr. Palaeoclimatol. Palaeoecol., 200(1–4), 187205, doi:10.1016/S0031-0182(03)00450-4.
  • Wu, Y., and S. Chafets (2002), 13C-enriched carbonate in Mississippian mud mounds: Alamogordo Member, Lake Valley Formation, Sacramento Mountains, New Mexico, U.S.A., J. Sedim. Res., 72(1), 138145, doi:10.1306/040201720138.
  • Yamamoto, K., R. Asami, and Y. Iryu (2010), Carbon and oxygen isotopic compositions of modern brachiopod shells from a warm-temperate shelf environment, Sagami Bay, central Japan, Palaeogeogr. Palaeoclimatol. Palaeoecol., 291(3–4), 348359, doi:10.1016/j.palaeo.2010.03.006.
  • Yose, L. A., A. S. Ruf, C. J. Strohmenger, J. S. Schuelke, A. Gombos, I. Al Hosani, S. Al Maskary, G. Bloch, Y. Al Mehairi, and I. G. Johnson (2006), Three-dimensional characterization of a heterogeneous carbonate reservoir, Lower Cretaceous, Abu Dhabi (United Arab Emirates), in Giant Hydrocarbon Reservoirs of the World: From Rocks to Reservoir Characterization and Modeling, Amer. Assoc. Petrol. Geol. Mem, no. 88, edited by P. M. Harris and L. J. Weber, pp. 173212, Amer. Assoc. Petrol. Geol., Tulsa. doi:10.1306/1215877M882562.
  • Yose, L. A., C. J. Strohmenger, I. Al Hosani, A. S. Ruf, A. M. Gombos, G. Bloch, S. S. Al Maskary, and Y. Al Mehairi (2010), Sequence-stratigraphic evolution of an Aptian carbonate platform (Shu'aiba Formation), southern Arabian Plate, onshore Abu Dhabi, United Arab Emirates, in Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate, GeoArabia Spec. Publ., vol. 4, edited by F. S. P. van Buchem et al. pp. 309340, Gulf PetroLink, Bahrain.