SEARCH

SEARCH BY CITATION

References

  • Aizawa, K., et al. (2005), Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential, Earth Planet. Sci. Lett., 235, 343355.
  • Allwardt, J. R., J. F. Stebbins, H. Terasaki, L.-S. Du, D. J. Frost, A. C. Withers, M. M. Hirschmann, A. Suzuki, and E. Ohtani (2007), Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities, Am. Mineral., 92, 10931104.
  • Ardia, P., D. Giordano, and M. W. Schimidt (2008), A model for the viscosity of rhyolite as a function of H2O-content and pressure: A calibration based on centrifuge piston cylinder experiments, Geochim. Cosmochim. Acta, 72, 61036123.
  • Bottinga, Y., and D. F. Weill (1972), Viscosity of magmatic silicate liquids—model for calculation. Am. J. Sci. 272(5), 438 – 475.
  • Costa, A., L. Caricchi, and N. Bagdassarov (2009), A model for the rheology of particle-bearing suspensions and partially molten rocks, Geochem. Cosmochem. Geosyst., 10, Q03010, doi:10.1029/2008GC002138.
  • Duffy, J. A. (1993), A review of optical basicity and its applications to oxidic systems, Geochim. Cosmochim. Acta, 57, 39613970.
  • Duffy, J. A., and M. D. Ingram (1975), Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses, J. Inorg. Nucl. Chem., 37, 12031206.
  • Duffy, J. A., and M. D. Ingram (1976), An interpretation of glass chemistry in terms of the optical basicity concept, J. Non-Cryst. Solids, 21, 373 – 410.
  • Everson, E. D., W. S. Holbrook, D. Lizarralde, H. van Avendonk, and P. Denyer (2011), Seismic structure of the Costa Rican volcanic arc and Caribbean large igneous province from active-source onshore-offshore seismic data, American Geophysical Union, Fall Meeting 2011, abstract #T53A-2493.
  • Gaillard, F. (2004), Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure, Earth Planet. Sci. Lett., 218, 215228.
  • Gaillard, F., and G. Iacono Marziano (2005), Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition, J. Geophys. Res., 110, B06204, doi:10.1029/2004JB003282.
  • Giordano, D., and D. B. Dingwell (2003), Non-Arrhenian multicomponent melt viscosity: a model, Earth Planet. Sci. Lett., 208, 337349.
  • Giordano, D., J. K. Russell, and D. B. Dingwell (2008), Viscosity of magmatic liquids: A model, Earth Planet. Sci. Lett., 271, 123134.
  • Grandjean, A., M. Malki, C. Simonnet, D. Manara, and B. Penelon (2007), Correlation between electrical conductivity, viscosity, and structure in borosilicate glass-forming melts, Phys. Rev. B, 75, doi:10.1103/PhysRevB.75.054112.
  • Hack, A. C., and A. B. Thompson (2011), Density and viscosity of hydrous magmas and related fluids and their role in subduction zone processes, J. Petrol., 52, 13331362.
  • Hashin, Z., and S. Shtrikman (1962), On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10, 335342, doi:10.1016/0022-5096(62)90004-2.
  • Hill G. J., G. T. Caldwell, W. Heise, D. G. Chertkoff, H. M. Bibby, M. K. Burgess, J. P. Cull, and R. A. F. Cas (2009), Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data, Nat. Geosci., 2, 785789.
  • Karki, B. B., and L. P. Stixrude (2010), Viscosity of MgSiO3 liquid at Earth's mantle conditions: implications for an early magma ocean, Science, 328, 740742.
  • Manzella, A., G. Volpi, A. Zaja, and M. Meju (2004), Combined TEM-MT investigation of shallow-depth resistivity structure of Mt. Somma-Vesuvius, J. Volcanol. Geotherm. Res., 131, 1932, doi:10.1016/S0377-0273(03)00313-5.
  • Mathieu, R., G. Libourel, E. Deloule, L. Tissandier, C. Rapin, and R. Podor (2011), Na2O solubility in CaO-MgO-SiO2 melts, Geochim. Cosmochim. Acta, 75, 608628.
  • Moretti, R. (2005), Polymerisation, basicity, oxidation state and their role in ionic modeling of silicate melts, Ann. Geophys., 48, 583608.
  • Müller, A., and V. Haak (2004), 3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography, J. Volcanol. Geotherm. Res., 138, 205222.
  • Ni, H., H. Keppler, and H. Behrens (2011), Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle, Contrib. Mineral. Petrol., doi: 10.1007/s00410-011-0617-4.
  • Paulatto, M., C. Annen, T. J. Henstock, E. Kiddle, T. A. Minshull, R. S. J. Sparks, and B. Voight (2011), Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat, Geochem. Cosmochem. Geosyst., 13, Q01014, doi:10.1029/2011GC003892.
  • Pommier, A., and E. Le Trong (2011), “SIGMELTS”: A webportal for electrical conductivity calculations in geosciences, Comput. Geosci., 37, 14501459.
  • Pommier, A., F. Gaillard, M. Pichavant, and B. Scaillet (2008), Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure, J. Geophys. Res., 113, doi:10.1029/2007JB005269.
  • Pommier, A., P. Tarits, S. Hautot, M. Pichavant, B. Scaillet, and F. Gaillard (2010), A new petrological and geophysical investigation of the present-day plumbing system of Mount Vesuvius, Geochem. Cosmochem. Geosyst., doi:10.1029/2010GC003059.
  • Rai, C. S., and M. H. Manghnani (1977), Electrical conductivity of basalts to 1550 °C. In Magma Genesis: Bulletin 96, edited by H. J. B. Dick, p. 219232, Oregon Department of Geology and Mineral Industries, Portland, OR.
  • Roberts, J., and J. Tyburczy (1999), Partial-melt electrical conductivity: influence of melt composition, J. Geophys. Res., 104, 70557065.
  • Shaw, H. R. (1965), Comments on viscosity, crystal settling, and convection in granitic magmas, Am. J. Sci., 263, 120152.
  • Singh, P., R. D. Banhatti, and K. Funke (2005), Non-Arrhenius viscosity related to short-time ion dynamics in a fragile molten salt, Phys. Chem. Chem. Phys., 7, 10961099.
  • Sparks, R. S. J., P. Meyer, and H. Sigurdsson (1980), Density variation amongst mid-ocean ridge basalts: implications for magma mixing and the scarcity of primitive lavas, Earth Planet. Sci. Lett., 46, 419430.
  • Ten Grotenhuis, S. M., et al. (2005), Melt distribution in olivine rocks based on electrical conductivity measurements, J. Geophys. Res., 110, doi:10.1029/2004JB003462.
  • Tinker, D., C. E. Lesher, G. M. Baxter, T. Uchida, and Y. Wang (2004), High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation, Am. Mineralog., 89, 17011708.
  • Tyburczy, J. A., and Waff, H. S. (1983), Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure, J. Geophys. Res., 88, 24132430.
  • Vetere, F., H. Behrens, F. Holtz, and D. R. Neuville (2006), Viscosity of andesitic melts—new experimental data and a revised calculation model, Chem. Geol., 228, 233245.
  • Vogel, H. (1921), The temperature dependence law of the viscosity of fluids, Physikalische Zeitschrift, 22, 645646.
  • Zhang, G.-H., and K.-C. Chou (2010), Simple method for estimating the electrical conductivity of oxide melts with optical basicity, Metall. Trans. B, 41B, 131136.
  • Zhang, G.-H., Q.-G. Xue, and K.-C. Chou (2011), Study on relation between viscosity and electrical conductivity of aluminosilicate melts, Ironmak. Steelmak., 38, 149154.