SEARCH

SEARCH BY CITATION

References

  • Alt, J. C., P. Lonsdale, R. Haymon, and K. Muehlenbachs (1987), Hydrothermal sulfide and oxide deposits on seamounts near 21-degrees-N, East Pacific Rise, Geol. Soc. Am. Bull., 98(2), 157168.
  • Baker, E. T., and C. R. German (2004), On the global distribution of hydrothermal vent fields, in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans vol. 148, edited by C. R. German, J. Lin, and L. M. Parson, pp. 245266, American Geophysical Union, Washington, D.C.
  • Bohnenstiehl, D. R., R. P. Dziak, M. Tolstoy, C. G. Fox, and M. Fowler (2004), Temporal and spatial history of the 1999–2000 Endeavour Segment seismic series, Juan de Fuca Ridge, Geochem. Geophys. Geosyst., 5, Q09003, doi:10.1029/2004GC000735.
  • Butterfield, D. A., R. E. McDuff, M. J. Mottl, M. D. Lilley, J. E. Lupton, and G. J. Massoth (1994), Gradients in the composition of hydrothermal fluids from the Endeavour Segment vent field—Phase-separation and brine loss, J. Geophys. Res., 99, 95619583.
  • Butterfield, D. A., I. R. Jonasson, G. J. Massoth, R. A. Feely, K. K. Roe, R. E. Embley, J. F. Holden, R. E. McDuff, M. D. Lilley, and J. R. Delaney (1997), Seafloor eruptions and evolution of hydrothermal fluid chemistry, Philos. Trans. R. Soc. London A, 355(1723), 369386.
  • Carbotte, S. M., R. S. Detrick, A. Harding, J. P. Canales, J. Babcock, G. Kent, E. Van Ark, M. Nedimovic, and J. Diebold (2006), Rift topography linked to magmatism at the intermediate spreading Juan de Fuca Ridge, Geology, 34, 209212.
  • Carbotte, S. M., J. P. Canales, M. R. Nedimovic, H. Carton, and J. C. Mutter (2012), Recent seismic studies at the East Pacific Rise 8° 20′-10° 10′ N and Endeavour Segment insights into mid-ocean ridge hydrothermal and magmatic processes, Oceanography, 25(1), 100112.
  • Cherkashov, G., et al. (2010), Seafloor massive sulfides from the Northern Equatorial Mid-Atlantic Ridge: New discoveries and perspectives, Mar. Georesour. Geotechnol., 28(3), 222239.
  • Clague, D. A., D. W. Caress, H. Thomas, D. Thompson, M. Calarco, J. Holden, and D. Butterfield (2008), Abundance and distribution of hydrothermal chimneys and mounds on the Endeavour Ridge determined by 1-m resolution AUV multibeam mapping surveys, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract V41B-2079.
  • Converse, D. R., H. D. Holland, and J. M. Edmond (1984), Flow-rates in the axial hot springs of the East Pacific Rise (21-degrees-N)—Implications for the heat budget and the formation of massive sulfide deposits, Earth Planet. Sci. Lett., 69(1), 159175.
  • Davis, E., and H. Elderfield (2004), Hydrogeology of the Oceanic Lithosphere, Cambridge University Press, Cambridge, UK.
  • Davis, E. E., K. Wang, R. E. Thomson, K. Becker, and J. F. Cassidy (2001), An episode of seafloor spreading and associated plate deformation inferred from crustal fluid pressure transients, J. Geophys. Res., 106, 2195321963.
  • de Ronde, C. E. J., et al. (2005), Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, Southern Kermadec Arc, New Zealand, Econ. Geol., 100(6), 10971133.
  • de Ronde, C. E. J., et al. (2011), Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand, Miner. Deposita, 46(5–6), 541584.
  • Delaney, J., R. McDuff, V. Robigou, A. Schultz, M. Smith, J. Wells, V. Atnipp, and J. McClain (1990), Covariation in microseismicity and hydrothermal output in the Endeavour vent field (Abstract), Eos Trans. AGU, 71, 1609.
  • Delaney, J. R., V. Robigou, R. E. McDuff, and M. K. Tivey (1992), Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge, J. Geophys. Res., 97, 19,66319,682.
  • Ditchburn, R., I. Graham, B. Barry, and C. de Ronde (2004), Uranium series disequilibrium dating of black smoker chimneys, N. Z. Sci. Rev., 61, 5456.
  • Ditchburn, R. G., C. E. J. de Ronde, and B. J. Barry (2012), Radiometric dating of volcanogenic massive sulfides and associated iron oxide crusts with an emphasis on Ra-226/Ba and Ra-228/Ra-226 in volcanic and hydrothermal processes at intraoceanic arcs, Econ. Geol., 107(8), 16351648.
  • Embley, R. W., W. W. Chadwick, I. R. Jonasson, D. A. Butterfield, and E. T. Baker (1995), Initial results of the rapid response to the 1993 Coaxial event—Relationships between hydrothermal and volcanic processes, Geophys. Res. Lett., 22, 143146.
  • Glickson, D. A., D. S. Kelley, and J. R. Delaney (2006), The Sasquatch hydrothermal field: Linkages between seismic activity, hydrothermal flow, and geology, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract V23B-0614.
  • Glickson, D. A., D. S. Kelley, and J. R. Delaney (2007), Geology and hydrothermal evolution of the Mothra Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge, Geochem. Geophys. Geosyst., 8, Q06010, doi:10.1029/2007GC001588.
  • Goldstein, S. J., M. T. Murrell, D. R. Janecky, J. R. Delaney, and D. A. Clague (1991), Geochronology and petrogenesis of MORB from the Juan de Fuca and Gorda Ridges by U-238 Th-230 disequilibrium, Earth Planet. Sci. Lett., 107(1), 2541.
  • Grasty, R. L., C. W. Smith, J. M. Franklin, and I. R. Jonasson (1988), Radioactive orphans in barite-rich chimneys, Axial Caldera, Juan-de-Fuca Ridge, Can. Mineral., 26, 627636.
  • Hannington, M., C. de Ronde, and S. Petersen (2005), Sea-floor tectonics and submarine hydrothermal systems, in Economic Geology, 100th Anniversary Volume, edited by J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, and J. P. Richards, pp. 111141. J. P. Society of Economic Geologists, Littleton, Colorado, USA.
  • Hannington, M., J. Jamieson, T. Monecke, S. Petersen, and S. Beaulieu (2011), The abundance of seafloor massive sulfide deposits, Geology, 39(12), 11551158.
  • Hooft, E. E. E., et al. (2010), A seismic swarm and regional hydrothermal and hydrologic perturbations: The northern Endeavour Segment, February 2005, Geochem. Geophys. Geosyst., 11, Q12015, doi:10.1029/2010GC003264.
  • Johnson, H. P., M. Hutnak, R. P. Dziak, C. G. Fox, I. Urcuyo, J. P. Cowen, J. Nabelek, and C. Fisher (2000), Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge, Nature, 407(6801), 174177.
  • Johnson, H. P., M. A. Tivey, T. A. Bjorklund, and M. S. Salmi (2010), Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge, Geochem. Geophys. Geosyst., 11, Q05002, doi:10.1029/2009GC002957.
  • Kadko, D., and D. A. Butterfield (1998), The relationship of hydrothermal fluid composition and crustal residence time to maturity of vent fields on the Juan de Fuca Ridge, Geochim. Cosmochim. Acta, 62(9), 15211533.
  • Kadko, D., R. Koski, M. Tatsumoto, and R. Bouse (1985), An estimate of hydrothermal fluid residence times and vent chimney growth-rates based on Pb-210-Pb ratios and mineralogic studies of sulfides dredged from the Juan-de-Fuca Ridge, Earth Planet. Sci. Lett., 76(1–2), 3544.
  • Kappel, E. S., and W. B. F. Ryan (1986), Volcanic episodicity and a nonsteady state rift-valley along northeast Pacific spreading centers—Evidence from Sea Marc-I, J. Geophys. Res., 91, 1392513940.
  • Karsten, J. L., J. R. Delaney, J. M. Rhodes, and R. A. Liias (1990), Spatial and temporal evolution of magmatic systems beneath the Endeavour Segment, Juan de Fuca Ridge—Tectonic and petrologic constraints, J. Geophys. Res., 95, 19,23519,256.
  • Kelley, D. S., J. R. Delaney, and D. R. Yoerger (2001), Geology and venting characteristics of the Mothra hydrothermal field, Endeavour Segment, Juan de Fuca Ridge, Geology, 29(10), 959962.
  • Kelley, D. S., J. A. Baross, and J. R. Delaney (2002), Volcanoes, fluids, and life at mid-ocean ridge spreading centers, Annu. Rev. Earth Planet. Sci., 30, 385491.
  • Kelley, D. S., et al. (2012), Endeavour Segment of the Juan de Fuca Ridge: One of the most remarkable places on earth, Oceanography, 25(1), 4461.
  • Kim, K. H., and G. M. McMurtry (1991), Radial growth-rates and Pb-210 ages of hydrothermal massive sulfides from the Juan de Fuca Ridge, Earth Planet. Sci. Lett., 104(2–4), 299314.
  • Kreemer, C., W. E. Holt, and A. J. Haines (2003), An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int., 154(1), 834.
  • Kristall, B., D. S. Kelley, M. D. Hannington, and J. R. Delaney (2006), Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: A petrological and geochemical study, Geochem. Geophys. Geosyst., 7, Q07001, doi:10.1029/2005GC001166.
  • Kristall, B., D. Nielsen, M. D. Hannington, D. S. Kelley, and J. R. Delaney (2011), Chemical microenvironments within sulfide structures from the Mothra Hydrothermal Field: Evidence from high-resolution zoning of trace elements, Chem. Geol., 290(1–2), 1230.
  • Kuznetsov, V., F. Maksimov, A. Zheleznov, G. Cherkashov, V. BeL′Tenev, and L. Lazareva (2011), Th-230/U chronology of ore formation within the Semyenov Hydrothermal District (13° 31′ N) at the Mid-Atlantic Ridge, Geochronometria, 38(1), 7276.
  • Kuznetsov, Y., G. A. Cherkashev, V. E. Bel′tenev, A. Y. Lein, F. E. Maximov, V. V. Shilov, and T. V. Stepanova (2007), The Th-230/U dating of sulfide ores in the ocean: Methodical possibilities, measurement results, and perspectives of application, Dokl. Earth Sci., 417(8), 12021205.
  • Lalou, C., and E. Brichet (1982), Ages and implications of East Pacific Rise sulfide deposits at 21-Degrees-N, Nature, 300(5888), 169171.
  • Lalou, C., E. Brichet, and R. Hekinian (1985), Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12-degrees-50′N, Earth Planet. Sci. Lett., 75(1), 5971.
  • Lalou, C., J. L. Reyss, E. Brichet, P. A. Rona, and G. Thompson (1995), Hydrothermal activity on a 10(5)-year scale at a slow-spreading ridge, TAG hydrothermal field, mid-Atlantic Ridge 26-degrees-N, J. Geophys. Res., 100, 17,85517,862.
  • Lalou, C., J. L. Reyss, E. Brichet, S. Krasnov, T. Stepanova, G. Cherkashev, and V. Markov (1996), Initial chronology of a recently discovered hydrothermal field at 14 degrees 45′N, Mid-Atlantic Ridge, Earth Planet Sci. Lett., 144(3–4), 483490.
  • Lalou, C., U. Munch, P. Halbach, and J. L. Reyss (1998), Radiochronological investigation of hydrothermal deposits from the MESO zone, Central Indian Ridge, Mar. Geol., 149(1–4), 243254.
  • Langmuir, C., et al. (1997), Hydrothermal vents near a mantle hot spot: The Lucky Strike vent field at 37 degrees N on the Mid-Atlantic Ridge, Earth Planet. Sci. Lett., 148(1–2), 6991.
  • Larson, B. I., M. D. Lilley, and E. J. Olson (2009), Parameters of subsurface brines and hydrothermal processes 12–15 months after the 1999 magmatic event at the Main Endeavor Field as inferred from in situ time series measurements of chloride and temperature, J. Geophys. Res., 114, B01207, doi:10.1029/2008JB005627.
  • Lilley, M. D., D. A. Butterfield, J. E. Lupton, and E. J. Olson (2003), Magmatic events can produce rapid changes in hydrothermal vent chemistry, Nature, 422(6934), 878881.
  • Lowell, R. P., P. A. Rona, and R. P. Vonherzen (1995), Sea-floor hydrothermal systems, J. Geophys. Res., 100, 327352.
  • Macdonald, K. C. (1982), Mid-ocean ridges—Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Annu. Rev. Earth Planet. Sci., 10, 155190.
  • Moore, W. S., and D. Stakes (1990), Ages of barite-sulfide chimneys from the Mariana Trough, Earth Planet. Sci. Lett., 100(1–3), 265274.
  • Munch, U., C. Lalou, P. Halbach, and H. Fujimoto (2001), Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63 degrees 56′ E—Mineralogy, chemistry and chronology of sulfide samples, Chem. Geol., 177(3–4), 341349.
  • Petersen, S., K. Kuhn, T. Kuhn, N. Augustin, R. Hekinian, L. Franz, and C. Borowski (2009), The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14 degrees 45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation, Lithos, 112(1–2), 4056.
  • Proskurowski, G., M. D. Lilley, and T. A. Brown (2004), Isotopic evidence of magmatism and seawater bicarbonate removal at the endeavour hydrothermal system, Earth Planet. Sci. Lett., 225(1–2), 5361.
  • Reyes, A. O., W. S. Moore, and D. S. Stakes (1995), Th-228/Ra-228 ages of a barite-rich chimney from the Endeavour Segment of the Juan-de-Fuca Ridge, Earth Planet. Sci. Lett., 131(1–2), 99113.
  • Riddihough, R. (1984), Recent movements of the Juan-de-Fuca plate system, J. Geophys. Res., 89, 69806994.
  • Robigou, V., J. R. Delaney, and D. S. Stakes (1993), Large massive sulfide deposits in a newly discovered active hydrothermal system, the Highrise Field, Endeavour Segment, Juan-de-Fuca Ridge, Geophys. Res. Lett., 20(17), 18871890.
  • Seyfried, W. E., J. S. Seewald, M. E. Berndt, K. Ding, and D. I. Foustoukos (2003), Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events, J. Geophys. Res., 108(B9), 2429, doi:10.1029/2002JB001957.
  • Shilov, V. V., V. E. Bel′tenev, V. N. Ivanov, G. A. Cherkashev, I. I. Rozhdestvenskaya, I. F. Gablina, I. G. Dobretsova, E. V. Narkevskii, A. N. Gustaitis, and V. Y. Kuznetsov (2012), New hydrothermal ore fields in the Mid-Atlantic Ridge: Zenith-Victoria (20 degrees 08′ N) and Petersburg (19 degrees 52′ N), Dokl. Earth Sci., 442(1), 6369.
  • Solomon, S. C., P. Y. Huang, and L. Meinke (1988), The seismic moment budget of slowly spreading ridges, Nature, 334(6177), 5860.
  • Sours-Page, R., K. T. M. Johnson, R. L. Nielsen, and J. L. Karsten (1999), Local and regional variation of MORB parent magmas: Evidence from melt inclusions from the Endeavour Segment of the Juan de Fuca Ridge, Contrib. Mineral. Petrol., 134(4), 342363.
  • Stakes, D., and W. S. Moore (1991), Evolution of hydrothermal activity on the Juan-de-Fuca Ridge—Observations, mineral ages, and Ra isotope ratios, J. Geophys. Res., 96, 21,73921,752.
  • Tivey, M. K., and J. R. Delaney (1986), Growth of large sulfide structures on the Endeavour Segment of the Juan-de-Fuca Ridge, Earth Planet. Sci. Lett., 77(3–4), 303317.
  • Tivey, M. K., D. S. Stakes, T. L. Cook, M. D. Hannington, and S. Petersen (1999), A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study, J. Geophys. Res., 104, 22,85922,883.
  • Van Ark, E. M., R. S. Detrick, J. P. Canales, S. M. Carbotte, A. J. Harding, G. M. Kent, M. R. Nedimovic, W. S. D. Wilcock, J. B. Diebold, and J. M. Babcock (2007), Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations with seismicity and hydrothermal activity, J. Geophys. Res., 112, B02401, doi:10.1029/2005JB004210.
  • Volpe, A. M., and S. J. Goldstein (1993), Ra-226 Th-230 disequilibrium in axial and off-axis mid-ocean ridge basalts, Geochim. Cosmochim. Acta, 57(6), 12331241.
  • Von Damm, K. L. (1990), Seafloor hydrothermal activity—Black smoker chemistry and chimneys, Annu. Rev. Earth Planet. Sci., 18, 173204.
  • Wang, Y. J., X. Q. Han, X. L. Jin, Z. Y. Qiu, Z. B. Ma, and H. L. Yang (2012), Hydrothermal activity events at Kairei field, Central Indian Ridge 25 degrees S, Resour. Geol., 62(2), 208214.
  • Wilcock, W. S. D., E. E. E. Hooft, D. R. Toomey, P. R. McGill, A. H. Barclay, D. S. Stakes, and T. M. Ramirez (2009), The role of magma injection in localizing black-smoker activity, Nature Geosci., 2(7), 509513.