SEARCH

SEARCH BY CITATION

References

  • Ando, M. (1975), Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan, Tectonophysics, 27, 119140.
  • Bangs, N. L., T. H. Shipley, S. P. S. Gulick, G. F. Moore, S. Kuramoto, and Y. Nakamura (2004), Evolution of the Nankai Trough décollement from the trench into the seismogenic zone: Inferences from three-dimensional seismic reflection imaging, Geology, 32, 273276, doi:10.1130/G20211.1.
  • Bangs, N. L. B., G. F. Moore, S. P. S. Gulick, E. M. Pangborn, H. J. Tobin, S. Kuramoto, and A. Taira (2009), Broad, weak regions of the Nankai megathrust and implications for shallow coseismic slip, Earth Planet. Sci. Lett., 284, 4449.
  • Behnsen, J., and D. R. Faulkner (2012), The effect of mineralogy and effective normal stress on frictional strength of sheet silicates, J. Struct. Geol., 42, 4961.
  • Bourlange, S., L. Jouniax, and P. Henry (2004), Data report: permeability, compressibility, and friction coefficient measurements under confining pressure and strain, Leg 190, Nankai Trough, in Proceedings of Ocean Drilling Program, Scientific Results, vol. 190/196, edited by H. Mikada, G. F. Moore, A. Taira, K. Becker, J. C. Moore, and A. Klaus, pp. 116, Ocean Drilling Program, Texas A&M University, College Station, Tex, doi:10.2973/odp.proc.sr.190196.215.2004.
  • Bray, C. J., and D. E. Karig (1985), Porosity of sediments in accretionary prisms and some implications for the dewatering process, J. Geophys. Res., 90, 768778.
  • Brown, K. M., and J. C. Moore (1993), Comment on “Anisotropic permeability and tortuosity in deformed wet sediments” by J. Arch and A. Maltman, J. Geophys. Res., 98, 17,85917,864.
  • Brown, K. M., A. Kopf, M. B. Underwood, and J. L. Weinberger (2003), Compositional and fluid pressure controls on the state of stress on the Nankai subduction thrust: A weak plate boundary, Earth Planet. Sci. Lett., 214, 589603.
  • Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 215626.
  • Carpenter, B. M., C. Marone, and D. M. Saffer (2011), Weakness of the San Andreas Fault revealed by samples from the active fault zone, Nature Geosci., 4, 251254.
  • Conin, M., P. Henry, V. Godard, and S. Bourlange (2012), Splay fault slip in a subduction margin, a new model of evolution, Earth Planet. Sci. Lett., 341–344, 170175, doi:10.1016/j.epsl.2012.06.003.
  • Dahlen, F. A. (1990), Critical taper model of fold-and-thrust belts and accretionary wedges, Ann. Rev. Earth Planet. Sci., 18, 5599.
  • Davis, D., J. Suppe, and F. A. Dahlen (1983), Mechanics of fold-and-thrust belts and accretionary wedges, J. Geophys. Res., 88, 11531172.
  • Deng, X., and M. B. Underwood (2001), Abundance of smectite and the location of a plate-boundary fault, Barbados accretionary prism, Geol. Soc. Am. Bull., 113, 495507.
  • Expedition 314 Scientists (2009), Expedition 314 site C0006, in Proceeding of Integrated Ocean Drilling Program, vol. 314/315/316, edited by M. Kinoshita, H. Tobin, J. Ashi, G. Kimura, S. Lallemant, E. J. Screaton, D. Curewitz, H. Masago, K. T. Moe, and the Expedition 314/315/316 Scientists, Integrated Ocean Drilling Program Management International, Inc., Washington, D. C., doi:10.2204/iodp.proc.314315316.118.2009.
  • Faulkner, D. R., and E. H. Rutter (2000), Comparison of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20°C, J. Geophys. Res., 105, 16,41516,426.
  • Faulkner, D.R., T.M. Mitchell, J. Behnsen, T. Hirose and T. Shimamoto (2011), Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs, Geophys. Res. Lett., 38, L18303, doi:10.1029/2011GL048552.
  • Handin, J. (1969), On the Coulomb-Mohr failure criterion. J. Geophys. Res., 74, 53435348.
  • Henry, P., T. Kanamatsu, K. T. Moe, M. Strasser, and the Expedition 333 Scientists (2012a), IODP Expedition 333 returns to the subduction inputs sites and cores mass transport deposits at the footwall of the megasplay thrust, Sci. Drill., 14, 417, doi:10.2204/iodp.sd.14.01.2012.
  • Henry, P., T. Kanamatsu, K. Moe, and the Expedition 333 Scientists (2012b), Proceedings of Integrated Ocean Drilling Program, vol. 333, Integrated Ocean Drilling Program Management International, Inc., Tokyo, doi:10.2204/iodp.proc.333.2012.
  • Hüpers, A., and A. J. Kopf (2012), Data report: Consolidation properties of silty claystones and sandstones sampled seaward of the Nankai Trough subduction zone, IODP Sites C0011 and C0012, in Proceedings of Integrated Ocean Drilling Program, vol. 322, edited by S. Saito, M. B. Underwood, Y. Kubo, and the Expedition 322 Scientists, Integrated Ocean Drilling Program Management International, Inc., Tokyo, doi:10.2204/iodp.proc.322.203.2012.
  • Ikari, M.J., and A.J. Kopf (2011), Cohesive strength of clay-rich sediment, Geophys. Res. Lett., 38, L16309, doi:10.1029/2011GL047918.
  • Ikari, M. J., and D. M. Saffer (2011), Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex, Geochem. Geophys., Geosyst., 12, Q0AD11, doi:10.1029/2010GC003442.
  • Ikari, M. J., and D. M. Saffer (2012), Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism, Mar. Geol., 295–298, 113.
  • Ikari, M. J., D. M. Saffer, and C. Marone (2007), Effect of hydration state on the frictional properties of montmorillonite-based fault gouge, J. Geophys. Res., 112, B06423, doi:10.1029/2006JB004748.
  • Ikari, M. J., D. M. Saffer, and C. Marone (2009a), Frictional and hydrologic properties of a major splay fault system, Nankai subduction zone, Geophys. Res. Lett., 36, L20313, doi:10.1029/2009GL040009.
  • Ikari, M. J., D. M. Saffer, and C. Marone (2009b), Frictional and hydrologic properties of clay-rich fault gouge, J. Geophys. Res., 114, B05409, doi:10.1029/2008JB006089.
  • Ike, T., G. F. Moore, S. Kuramoto, J.-O. Park, Y. Kaneda, and A. Taira (2008), Variations in sediment thickness and type along the northern Philippine Sea Plate at the Nankai Trough, Island Arc, 17, 324357, doi:10.1111/j.1440-1738.2008.00624.x.
  • Ito, Y., T. Tsuji, Y. Osada, M. Kido, D. Inazu, Y. Hayashi, H. Tsushima, R. Hino, and H. Fujimoto (2011), Frontal wedge deformation near the source region of the 2011 Tohoky-Oki earthquake, Geophys. Res. Lett., 38, L00G05, doi:10.1029/2011GL048355.
  • Kikuchi, M., Nakamura, M., and K. Yoshikawa (2003), Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms, Earth Planet. Space, 55, 159172.
  • Kimura, G., Y. Kitamura, Y. Hashimoto, A. Yamaguchi, T. Shibata, K. Ujiie, and S. Okamoto (2007), Transition of accretionary wedge structures around the up-dip limit of the seismogenic subduction zone, Earth Planet. Sci. Lett., 255, 471484.
  • Kimura, G., E. J. Screaton, D. Curewitz, and Expedition 316 Scientists (2008), NanTroSEIZE Stage 1A: NanTroSEIZE shallow megasplay and frontal thrusts, IODP Prelim. Rep. 316, Integrated Ocean Drilling Program Management International, Inc., Washington, DC, doi:10.224/iodp.pr.316.2008.
  • Kinoshita, M., T. Kanamatsu, K. Kawamura, T. Shibata, H. Hamamoto, and K. Fujino (2008), Heat flow distribution on the floor of Nankai Trough off Kumano and implications for the geothermal regime of subducting sediments, JAMSTEC Rep. Res. Dev., 8, 1328.
  • Kinoshita, M., H. Tobin, J. Ashi, G. Kimura, S. Lallemant, E. J. Screaton, D. Curewitz, H. Masago, K. T. Moe, and the Expedition 314/315/316 Scientists (2009), Proceedings of Integrated Ocean Drilling Program, vol. 314/315/316, Integrated Ocean Drilling Program Management International, Inc., Washington, D. C., doi:10.2204/iodp.proc.314315316.2009.
  • Kitajima, H., and D. M. Saffer (2012), Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust, Geophys. Res. Lett., 39, L23301, doi:10.1029/2012GL053793.
  • Kodaira, S., T. No, Y. Nakamura, T. Fujiwara, Y. Kaiho, S. Miura, N. Takahashi, Y. Kaneda and A. Taira (2012), Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake, Nat. Geosci. 5, 646–650, doi:10.1038/NGEO1547.
  • Kopf, A. (2001), Permeability variation across an active low-angle detachment fault, western Woodlark Basin (ODP Leg 180), and its implication for fault activation, in The Nature and Tectonic Significance of Fault Zone Weakening, edited by R. E. Holdsworth, R. A. Strachan, J. F. Magloughlin, and R. J. Knipe, Geol. Soc. London Spec. Publ., 186, 2341.
  • Kopf, A., and K. M. Brown (2003), Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts, Mar. Geol., 202, 193210.
  • Le Pichon, X., P. Henry, and S. Lallemant (1993), Accretion and erosion in subduction zones: The role of fluids, Annu. Rev. Earth Planet. Sci., 21, 307331.
  • Logan, J.M. and K.A. Rauenzahn (1987), Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric, Tectonophysics, 144, 87108.
  • Lupini, J. F., A. E. Skinner, and P. R. Vaughan (1981), The drained residual strength of cohesive soils, Geotechnique, 31, 181213.
  • Miyazaki, S., and K. Heki (2001), Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 43054326.
  • Moore, G. F., T. H. Shipley, P. L. Stoffa, D. E. Karig, A. Taira, S. Kuramoto, H. Tokuyama, and K. Suyehiro (1990), Structure of the Nankai Trough accretionary zone from multichannel seismic reflection data, J. Geophys. Res., 95, 87538765.
  • Moore, G. F., et al. (2001a), New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190, Geochem. Geophys. Geosyst., 2(10), 1058, doi:10.129/2001GC00166.
  • Moore, G. F., A. Taira, and A. Klaus (2001b), in Proceedings of Ocean Drilling Program, Initial Rep. 190, Ocean Drilling Program, Texas A&M University, College Station, Tex, doi:10.2973/odp.proc.ir.190.2001.
  • Moore, G. F., et al. (2009), Structural and seismic framework of the NanTroSEIZE Stage 1 transect, in Proceedings of Integrated Ocean Drilling Program, vol. 314/315/316, edited by M. Kinoshita, H. Tobin, J. Ashi, G. Kimura, S. Lallemant, E. J. Screaton, D. Curewitz, H. Masago, K. T. Moe, and the Expedition 314/315/316 Scientists, Integrated Ocean Drilling Program Management International, Inc., Washington, D. C., doi:10.2204/iodp.proc.314315316.102.2009.
  • Moore, J. C., and D. M. Saffer (2001), Updip limit of the seismogenic zone beneath the accrectionary prism of Southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, 183186.
  • Morrow, C., B. Radney, and J. Byerlee (1992), Frictional strength and the effective pressure law of montmorillonite and illite clays, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, Academic Press, Ltd., San Diego, CA, pp. 6988.
  • Morrow, C. A., D. E. Moore, and D. A. Lockner (2000), The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophys. Res. Lett., 27, 815818.
  • Morrow, C. A., and J. D. Byerlee (1991), A note on the frictional strength of laumontite from Cajon Pass, California, Geophys. Res. Lett., 18, 211214.
  • Park, J.-O., S. Kodaira, A. Nakanishi, S. Miura, Y. Kaneda, T. Tsuru, N. Takahashi, and T. Hori (2002), A deep strong reflector in the Nankai accretionary wedge from multichannel seismic data: Implications for underplating and interseismic shear stress release, J. Geophys. Res., 107(B4), 2061, doi:10.1029/2001JB000262.
  • Park, J.-O., T. Tsuru, T. No, K. Takizawa, S. Sato, and Y. Kaneda (2008), High-resolution 3D seismic reflection survey and prestack depth imaging in the Nankai Trough off southeast Kii Peninsula [in Japanese with English abstract], Butsuri Tansa, 61, 231241.
  • Polet, J., and H. Kanamori (2000), Shallow subduction zone earthquakes and their tsunamigenic potential, Geophys. J. Int., 142, 684702.
  • Rikitake, T. (1976), Recurrence of great earthquakes at subduction zones, Tectonophysics, 35, 335362.
  • Rowe, K. T., E. J. Screaton, and S. Ge (2012), Coupled fluid flow and deformation modeling of the frontal thrust region of the Kumano Basin transect, Japan: Implications for fluid pressures and décollement downstepping, Geochem. Geophys. Geosyst., 13, Q0AD23, doi:10.1029/2011GC003861.
  • Saffer, D., L. McNeill, T. Byrne, E. Araki, S. Toczko, N. Eguchi, K. Takahashi, and the Expedition 319 Scientists (2010), Proceedings of Integrated Ocean Drilling Program, vol. 319, Integrated Ocean Drilling Program Management International, Inc., Tokyo, doi:10.2204/iodp.proc.319.2010.
  • Saffer, D. M., and C. Marone (2003), Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts, Earth Planet. Sci. Lett., 215, 219235.
  • Saffer, D. M., K. M. Frye, C. Marone, and K. Mair (2001), Laboratory results indicating complex and potentially unstable frictional behavior of smectite clay, Geophys. Res. Lett., 28, 22972300.
  • Saffer, D. M., D. A. Lockner, and A. W. McKiernan (2012), Effects of smectite to illite transformation on the frictional strength and sliding stability of intact marine mudstones, Geophys. Res. Lett., 39, L11304, doi:10.1029/2012GL051761.
  • Saito, S., M. B. Underwood, Y. Kubo, and the Expedition 322 Scientists (2010), in Proceedings of Integrated Ocean Drilling Program, vol. 322, Integrated Ocean Drilling Program Management International, Inc., Tokyo, doi:10.2204/iodp.proc.322.2012.
  • Samuelson, J., D. Elsworth, and C. Marone (2009), Shear-induced dilatancy of fluid-saturated faults: Experiment and theory, J. Geophys. Res., 114, B12404, doi:10.1029/2008JB006273.
  • Satake, K. (1993), Depth distribution of coseismic slip along the Nankai Trough, Japan, from joint inversion of geodetic and tsunami data, J. Geophys. Res., 98, 45534565.
  • Screaton, E. J., et al. (2009), Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii peninsula, Japan: Results from IODP Expedition 316 Sites C0006 and C0007, Geochem. Geophys. Geosyst., 10, Q0AD01, doi:10.1029/2009GC002713.
  • Seno, T., S. Stein, and A. E. Gripp (1993), A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geologic data, J. Geophys. Res., 98, 17,94117,948.
  • Skarbek, R. M., and D. M. Saffer (2009), Pore pressure development beneath the décollement at the Nankai subduction zone: Implications for plate boundary fault strength and sediment dewatering, J. Geophys. Res., 114, B07401, doi:10.1029/2008JB006205.
  • Smith, S. A. F., and D. R. Faulkner (2010), Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy, J. Geophys. Res., 115, B02407, doi.10.1029/2008JB006274.
  • Steurer, J. F., and M. B. Underwood (2005), Clay mineralogy of mudstones from the Nankai Trough reference Sites 1173 and 1177 and frontal accretionary prism site 1174, in Proceedings of Ocean Drilling Program, Scientific Results, vol. 190/196, edited by H. Mikada, G. F. Moore, A. Taira, K. Becker, J. C. Moore, and A. Klaus, pp. 137, Ocean Drilling Program, Texas A&M University, College Station, Tex.
  • Taira, A., et al. (1992), Sediment deformation and hydrogeology of the Nankai Trough accretionary prism: Synthesis of shipboard results of ODP Leg 131, Earth Planet. Sci. Lett. 109, 431450.
  • Tanioka, Y., and K. Satake (2001), Detailed coseismic slip distribution of the 1944 Tonankai earthquake estimated from tsunami waveforms, Geophys. Res. Lett., 28, 10751078.
  • Tobin, H. J., and M. Kinoshita (2006), NanTroSEIZE: The IODP Nankai trough seismogenic zone experiment, Sci. Drill., 2, 2327, doi:10.2204/iodp.sd.2.06.2006.
  • Tobin, H. J. and D. M. Saffer (2009), Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone, Geology, 37, 679682, doi:10.1130/G25752A.1.
  • Tsuji, T., J.-O. Park, G. Moore, S. Kodaira, Y. Fukao, S. Kuramoto, and N. Bangs (2009), Intraoceanic thrusts in the Nankai trough off Kii peninsula: Implications for intraplate earthquakes, Geophys. Res. Lett., 36, L06303, doi:10.1029/2008GL036974.
  • Underwood, M. B. (2007), Sediment inputs to subduction zones: Why lithostratigraphy and clay mineralogy matter, in The Seismogenic Zone of Subduction Thrust Faults, edited by T. H. Dixon, and J. C. Moore, Columbia Univ. Press, New York, pp. 42–85.
  • Underwood, M. B., and J. Guo (2012), Data report: Clay mineral assemblages in the Shikoku Basin, NanTroSEIZE subduction inputs, IODP Sites C0011 and C0012, in Proceedings of Integrated Ocean Drilling Program, vol. 322, edited by Saito, M. B. Underwood, Y. Kubo, and the Expedition 322 Scientists, Integrated Ocean Drilling Program Management International, Inc., Tokyo.
  • Vrolijk, P. (1990), On the mechanical role of smectite, Geology, 18, 703707.
  • Wang, K. and S. L. Bilek (2011), Do subducting seamounts generate or stop large earthquakes? Geology, 39, 819822, doi:10.1130/G31856.1.
  • Wang, K., and Y. Hu (2006), Accrectionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge, J. Geophys. Res., 111, B06410, doiL10.1029/2005JB004094.
  • Yamano, M., J.-P. Foucher, M. Kinoshita, A. Fisher, R.D. Hyndman, and ODP Leg 131 Scientific Party (1992), Heat flow and fluid flow regime in the western Nankai accretionary prism, Earth Planet. Sci. Lett., 109, 451462.
  • Yamano, M., M. Kinoshita, S. Goto, and O. Matsubayashi (2003), Extremely high heat flow anomaly in the middle part of the Nankai Trough, Phys. Chem. Earth, 28, 487497.