• Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (1999), Interpretation of dissolved atmospheric noble gases in natural waters, Water Resour. Res., 35, 27792792.
  • Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (2000), Palaeotemperature reconstruction from noble gases in groundwater accounting for equilibration with entrapped air, Nature, 405, 10401044.
  • Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (2003), Manual for the program “NOBLE90”. [Available at, accessed 14 May 2013.].
  • Affek, H. P., M. Bar-Matthews, A. Ayalon, A. Matthews, and J. M. Eiler (2008), Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry, Geochim. Cosmochim. Acta, 72, 53515360.
  • Ayliffe, L. K., G. Turner, and P. G. Burnard (1993), Noble gas contents of speleothem inclusion fluids: Potential as indicators of precipitation temperature, Terra Nova, 5, 646.
  • Baur, H. (1980), Numerische simulation und praktische erprobung einer rotationssymmetrischen ionenquelle for gasmassenspektrometer, PhD thesis, ETH Zürich.
  • Beyerle, U., W. Aeschbach-Hertig, D. M. Imboden, H. Baur, T. Graf, and R. Kipfer (2000), A mass spectrometric system for the analysis of noble gases and tritium from water samples, Environ. Sci. Technol., 34, 20422050.
  • Brennwald, M. S., N. Vogel, Y. Scheidegger, Y. Tomonaga, D. M. Livingstone, and R. Kipfer (2013), Noble gases as environmental tracers in sediment porewaters and in stalagmite fluid inclusions, in The Noble Gases as Geochemical Tracers, edited by P. Burnard, p. 618, Springer, Berlin Heidelberg.
  • Doose-Rolinski, H., U. Rogalla, G. Scheeder, A. Lückge, and U. von Rad (2001), High-resolution temperature and evaporation changes during the late Holocene in the northeastern Arabian Sea, Paleoceanography, 16, 358367.
  • Fairchild, I. J., and A. Baker (2012), Speleothem Science: From Process to Past Environments, 432 pp., Wiley-Blackwell, West Sussex, U. K.
  • Fairchild, I. J., C. L. Smith, A. Baker, L. Fuller, C. Spötl, D. Mattey, F. McDermott, and E.M.I.F. (2006), Modification and preservation of environmental signals in speleothems, Earth Sci. Rev., 75, 105153.
  • Fleitmann, D., et al. (2007), Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra), Quat. Sci. Rev., 26, 170188.
  • Hendy, C. H., and A. T. Wilson (1968), Paleoclimatic data from speleothems, Nature, 219, 4851.
  • Huguet, C., J.-H. Kim, J. S. S. Damsté, and S. Schouten (2006), Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and U37K'), Paleoceanography, 21, PA3003, doi:10.1029/2005PA001215.
  • Kipfer, R., W. Aeschbach-Hertig, F. Peeters, and M. Stute (2002), Noble gases in lakes and ground waters, in Noble Gases in Geochemistry and Cosmochemistry, edited by D. Porcelli, C. J. Ballentine, and R. Wieler, pp. 615700, The Mineral. Soc. of Am., Washington, D. C.
  • Kluge, T., T. Marx, D. Scholz, S. Niggemann, A. Mangini, and W. Aeschbach-Hertig (2008), A new tool for paleoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems, Earth Planet. Sci. Lett., 269, 408415.
  • Krüger, Y., D. Marti, R. H. Staub, D. Fleitmann, and M. Frenz (2011), Liquid-vapour homogenisation of fluid inclusions in stalagmites: Evaluation of a new thermometer for palaeoclimate research, Chem. Geol., 289, 3947.
  • Ozima, M., and F. A. Podosek (2002), Noble Gas Geochemistry, 2nd ed., Cambridge Univ. Press, Cambridge, U. K.
  • Peeters, F., U. Beyerle, W. Aeschbach-Hertig, J. Holocher, M. S. Brennwald, and R. Kipfer (2002), Improving the noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios, Geochim. Cosmochim. Acta, 67, 587600.
  • Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429435.
  • Scheidegger, Y. M., H. Baur, M. S. Brennwald, D. Fleitmann, R. Wieler, and R. Kipfer (2010), Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites, Chem. Geol., 272, 3139.
  • Scheidegger, Y. M., M. S. Brennwald, D. Fleitmann, P.-Y. Jeannin, R. Wieler, and R. Kipfer (2011), Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions, Chem. Geol., 288, 6166.
  • Scherer, P., L. Schultz, and T. Loeken (1994), Weathering and atmopsheric noble gases in chondrites, in Noble Gas Geochemistry and Cosmochemistry, edited by J. Matsuda, pp. 4353, Terra Sci., Tokyo.
  • Thompson, P., H. P. Schwarcz, and D. C. Ford (1974), Continental pleistocene climatic variations from speleothem age and isotopic data, Science, 184, 893895.
  • Vogel, N., Y. Scheidegger, M. S. Brennwald, D. Fleitmann, S. Figura, R. Wieler, and R. Kipfer (2013), Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas, Clim. Past, 8, 19.
  • Zhang, R., H. P. Schwarcz, D. C. Ford, F. S. Schroeder, and P. A. Beddows (2008), An absolute paleotemperature record from 10 to 6 ka inferred from fluid inclusion D/H ratios of a stalagmite from Vancouver Island, British Columbia, Canada, Geochim. Cosmochim. Acta, 72, 10141026.