SEARCH

SEARCH BY CITATION

References

  • Allmendinger, R. W., J. W. Sharp, D. Von Tish, L. Serpa, L. Brown, S. Kaufman, J. Oliver, and R. B. Smith (1983), Cenozoic and Mesozoic structure of the eastern Basin and Range province, Utah, from COCORP seismic-reflection data, Geology, 11, 532536.
  • Argus, D. F., and R. G. Gordon (2001), Present tectonic motion across the Coast Ranges and San Andreas fault system in central California, Geol. Soc. Am. Bull., 113, 15801592.
  • Bauer, P., S. Palm, and M. R. Handy (2000), Strain localization and fluid pathways in mylonite: Inferences from in situ deformation a water-bearing quartz analogue (norcamphor), Tectonophysics, 320, 141165.
  • Bennett, R. A., B. P. Wernicke, N. A. Niemi, A. M. Friedrich, and J. L. Davis (2003), Contemporary strain rates in the northern Basin and Range province from GPS data, Tectonics, 22(2), 1008, doi:10.1029/2001TC001355.
  • Berryman, J. G. (2007), Seismic waves in rocks with fluids and fractures, Geophys. J. Int., 171, 954974.
  • Brander, L., H. Svahnberg, and S. Piazolo (2011), Brittle-plastic deformation in initially dry rocks at fluid present conditions: Transient behavior of feldspar at mid crustal levels, Contrib. Mineral. Petrol., 403–425 doi:10.1007/s00410-011-0677-5.
  • Braun, J., J. Chéry, A. Poliakov, D. Mainprice, A. Vauchez, A. Tomassi, and M. Daignieres (1999), A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine, J. Geophys. Res., 104, 25167.
  • Carreras, J., D. M. Czeck, E. Druguet, and P.J. Hudleston (2010), Structure and development of an anastomosing network of ductile shear zones, J. Struct. Geol., 32, 656666, doi:10.1016/j.jsg.2010.03.013.
  • Chinnery, M. A. (1969), Theoretical fault models, in A Symposium on Processes in the Focal Region, 37, edited by K. Kasahar and A. E. Stevens, pp. 211223, Publ. Dom. Obs., Ottawa.
  • Christiansen, P. P., and D. D. Pollard (1997), Nucleation, growth and structural development of mylonitic shear zones in granitic rocks, J. Struct. Geol., 19, 11591172.
  • Cordonnier, B., S. M. Schmalholz, K. U. Hess, and D. B. Dingwell (2012), Viscous heating in silicate melts: an experimental and numerical comparison, J. Geophys. Res., 117, B02203, doi:10.1029/2010JB007982.
  • Cowgill, E., R. D. Gold, X. Chen, X.-F. Wang, J. R. Arrowsmith, and J. Southon (2009), Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet, Geology, 37, 647650.
  • Dieterich, J. H. (1986), A model for the nucleation of earthquake slip, in Earthquake Source Mechanics, Geophys Monogr. Ser., vol. 37, edited by S. Das, J. Boatwright, and C. H. Scholz, pp. 3749, AGU, Washington, D. C.
  • Dolan, J. F., D. D. Bowman, and C.G. Sammis (2007), Long-range and long-term fault interactions in Southern California, Geology, 35, 855858, doi:10.1130/G23789A.1.
  • Evans, B. W. (2004), The serpentinite multisystem revisited: Chrysotile is meta-stable, Int. Geol. Rev., 46, 479506, doi:10.2747/0020-6814.46.6.479.
  • Frankel, K. L., et al. (2007), Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone, J. Geophys. Res., 112, B06407, doi:10.1029/2006JB004350.
  • Friedrich, A. M., B. P. Wernicke, N. A. Niemi, R. A. Bennett, and J. L. Davis (2003), Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years, J. Geophys. Res., 108(B4), 2199, doi:10.1029/2001JB000682.
  • Fusseis, F., and M. R. Handy (2008), Micromechanisms of shear zone propagation at the brittle-viscous transition, J. Struct. Geol., 30, 12421253.
  • Gapais, D., P. Balé, P. Choukroune, P. Cobbold, Y. Mahdjoub, and D. Marquer (1987), Bulk kinematics from shear zone patterns: Some field examples, J. Struct. Geol., 9, 635646.
  • Gébelin, A., A. Mulch, C. Teyssier, M. Heizler, T. Vennemann, and N. C. A. Seaton (2011), Oligo-Miocene extensional tectonics and fluid flow across the Northern Snake Range detachment system, Nevada, Tectonics, 30, TC5010, doi:10.1029/2010TC002797.
  • Gilbert, L., C. Scholz, and J. Beavan (1994), Strain localization along the San Andreas fault: Consequences for loading mechanisms, J. Geophys. Res., 99(B12), doi:10.1029/94JB01558.
  • Gleason, G. C., and J. Tullis (1995), A flow law for dislocation creep of quartz aggregates determined with the molten salt cell, Tectonophysics, 247, 123.
  • Handy, M. (1990), The solid-state flow of polymineralic rocks, J. Geophys. Res., 95, 86478661, doi:10.1029/90JB00243.
  • Handy, M. R., S. Wissing, and L. Streit (1999), Frictional-viscous flow in mylonite with varied bimineralic composition and its effect on lithospheric strength, Tectonophysics, 303, 175191.
  • Handy, M. R., G. Hirth, and R. Bürgmann (2007), Fault structure and rheology from the frictional-viscous transition downward, in The Dynamics of Fault Zones, Dahlem Workshop Rep. 95,3 pp. 139–181 edited by M. R. Handy, G. Hirth, and N. Hovius, MIT Press, Cambridge, Mass.
  • Herwegh, M., and K. Kunze (2002), The influence of nano-scale second-phase particles on deformation of fine-grained calcite mylonites, J. Struc. Geol., 24(9), 14631478.
  • Hilairet, N., B. Reynard, Y. Wang, I. Daniel, S. Merkel, N. Nishiyama, and S. Petitgirard (2007), High-pressure creep of serpentine, interseismic deformation, and initiation of subduction, Science, 318(5858), 19101913.
  • Hirth, G., and J. Tullis (1994), The brittle-plastic transition in experimentally deformed quartz aggregates, J. Geophys. Res., 99, 11,73111,747.
  • Ide, S., G. C. Beroza, D. R. Shelly, and T. Uchide (2007), A scaling law for slow earthquakes, Nature, 447(7140), 7679, doi:10.1038/Nature05780.
  • Kohlstedt, D. L., B. Evans, and S. J. Mackwell (1995), Strength of the Lithosphere—Constraints Imposed by Laboratory Experiments, J. Geophys. Res., 100, 17,58717,602, doi:10.1029/95JB01460.
  • Kozaci, O., J. F. Dolan, and R. C. Finkel (2009), Late Holocene slip rate for the central North Anatolian fault, from Tahtakorpru, Turkey, from cosmogenic 10Be geochronology: Implications for the constancy of fault loading and strain release rates, J. Geophys. Res., 114, B01405, doi:10.1029/2008JB005760.
  • Kronenberg, A. K., and J. Tullis (1984), Flow strengths of quartz aggregates: Grains size and pressure effects due to hydrolytic weakening, J. Geophys. Res., 89, 42814297.
  • Lee, J., D. F. Stockli, L. A. Owen, R. C. Finkel, and R. Kislitsyn (2009), Exhumation of the Inyo Mountains, California: Implications for the timing of extension along the western boundary of the Basin and Range Province and distribution of dextral fault slip rates across the eastern California shear zone, Tectonics, 28, TC1001, doi:10.1029/2008TC002295.
  • Lister, G. S., and G. A. Davis (1989), The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A, J. Struct. Geol., 11(1-2), 6594.
  • Mancktelow, N. S., and G. Pennacchioni (2005), The control of precursor brittle fracture and fluid-rock interaction on the development of single and paired ductile shear zones, J. Struct. Geol., 27(4), 645661.
  • McBride, J. H., W. J. Stephenson, R. A. Williams, J. K. Odum, D. M. Worley, R. W. Keach II, J. V. South, A. R. Brinkerhoff, and A. O. Okojie-Ayoro (2010), Shallow subsurface structure of the Wasatch fault, Provo segment, Utah, from an integrated compressional- and shear-wave seismic reflection profile with implications for fault structure and development, Bull. Geol. Soc. Am., 122, 8001814, doi:10.1130/B30174.1.
  • Mitra, G. (1978), Ductile deformation zones and mylonites: The mechanical processes involved in the deformation of crystalline basement rocks, Am. J. Sci., 278, 10571084.
  • Mitra, G. (1979), Ductile deformation zones in Blue Ridge basement rocks and estimation of finite strains, Geol. Soc. Am. Bull., Part I, 90, 935951.
  • Mitra, G. (1984), Brittle to ductile transition due to large strains along the White Rock Thrust, Wind River mountains, Wyoming, J. Struct. Geol., 6, 5161.
  • Montesi, L. G. J., and G. Hirth (2003), Grain size evolution and the rheology of ductile shear zones: From laboratory experiments to postseismic creep, Earth Planet Sci. Lett., 211(1-2), 97110.
  • Niemi, N. A., P. W. Brian, M. F. Anke, S. Mark, A. B. Richard, and L. D. James (2004), BARGEN continuous GPS data across the eastern Basin and Range province, and implications for fault system dynamics, Geophys. J. Int., 159, 842862.
  • Nüchter, J. A., and B. Stöckhert (2008), Coupled stress and pore fluid pressure changes in the middle crust: Vein record of coseismic loading and postseismic stress relaxation, Tectonics, 27, TC1007, doi:10.1029/2007TC002180.
  • Pennacchioni, G. (2005), Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites, Southern Alps (Italy), J. Struct. Geol., 27(4), 627644.
  • Pennacchioni, G., and N. S. Mancktelow (2007), Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions, J. Struct. Geol., 29(11), 17571780. doi:10.1016/j.jsg.2007.06.002.
  • Rutter, E. H., and K. H. Brodie (1988), The role of tectonic grain size reduction in the rheological stratification of the lithosphere, Geologische Rundschau, 77, 295307, doi:10.1007/BF01848691.
  • Schmid, S. M., M. S. Paterson, and J. N. Boland (1980), High temperature flow and dynamic recrystallization in Carrara Marble, Tectonophysics, 65, 245280.
  • Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., 471 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Sella, G. F., T. H. Dixon, and A. Mao (2002), REVEL: A model for recent plate velocities from space geodesy, J. Geophys. Res., 107(B4), doi:10.1029/2000JB000033.
  • Segall, P., and C. Simpson (1986), Nucleation of ductile shear zones on dilatant fractures, Geology, 14(1), 5659.
  • Shelton, G., and J. Tullis (1981), Experimental flow laws for crustal rocks, EOS Trans. AGU, 62, 396.
  • Sieh, K. E., and R. H. Jahns (1984), Holocene activity of the San Andreas fault at Wallace Creek, Calif. Geol. Soc. Am. Bull., 95, 883896.
  • Simpson, C. (1985), Deformation of granitic-rocks across the brittle ductile transition A, J. Struct. Geol., 7(5), 503511.
  • Simpson, C. (1986), Fabric development in brittle-to-ductile shear zones, Pure Appl. Geophys., 124(1-2), 269288.
  • Song, T. R. A., D. V. Helmberger, M. R. Brudzinski, R. W. Clayton, P. Davis, X. Perez-Campos, and S. K. Singh (2009), Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico, Science, 324, 502506, doi:10.1126/science.1167595.
  • Stel, H. (1986), The effect of cyclic operation of brittle and ductile deformation on the metamorphic assemblage in cataclasites and mylonites, Pure Appl. Geophys., 124(1), 289307.
  • Stewart, M., R. E. Holdsworth, and R. A. Strachan (2000), Deformation processes and weakening mechanisms within the frictional-viscous transition zone of major crustal-scale faults: Insights from the Great Glen Fault Zone, Scotland, J. Struct. Geol., 22, 543560, doi:10.1016/S0191-8141(99)00164-9.
  • Thatcher, W. (2009), How the continents deform—The evidence from tectonic geodesy, Ann. Rev. Earth Planet. Sci., 37, 237262, doi:10.1146/annurev.earth.031208.100035.
  • Tourigny, G., and A. Tremblay (1997), Origin and incremental evolution of brittle/ductile shear zones in granitic rocks: Natural examples from the southern Abitibi Belt, Canada, J. Struct. Geol., 19(1), 1527.
  • Van Avendonk, H., W. S. Holbrook, D. Lizarralde, M. M. Mora, S. Harder, A. D. Bullock, G. E. Alvarado, and C. J. Ramirez (2010), Seismic evidence for fluids in fault zones on top of the subducting Cocos plate beneath Costa Rica, Geophys. J. Int., 181, 9971016, doi:10.1111/j.1365-246X.2010.04552.x.
  • Velasco, M. S., R. A. Bennett, R. A. Johnson, and S. Hreinsdottir (2009), Subsurface fault geometries and crustal extension in the eastern Basin and Range Province, western U.S., Tectonophysics, 488, 14, doi:10.1016/j.tecto.2009.05.010.
  • Vissers, R. L. M., M. R. Drury, E. H. H. Strating, and D. Van der Wal (1991), Shear zones in the upper mantle: A case study in an Alpine Iherzolite massif, Geology, 19, 990993.
  • Wallace, R. E. (1987), Grouping and migration of surface faulting and variations in slip rates on faults in the Great Basin Province, Bull. Seismol. Soc. Am., 77, 868876.
  • Walker, A. N., E. H. Rutter, and K. H. Brodie (1990), Experimental study of grain-size sensitive flow of synthetic, hot-pressed calcite rocks, in Deformation Mechanisms, Rheology and Tectonics, Geol. Soc. Spec. Publ. Lond., 54, edited by R.J. Knipe and R. H. Rutter, pp. 259284, Geol. Soc. of London.
  • Weldon, R., K. Scharer, T. Fumal, and G. Biasi (2004), Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work, GSA Today, 14(9), 410, doi:10.1130/1052-5173(2004)014.
  • Wernicke, B. (1990), The fluid crustal layer and its implications for continental dynamics, in Exposed Cross Sections of the Continental Crust, vol. 317,edited by M. Salisbury and D. Fountain, pp. 509544, Kluwer Acad., NATO Adv. Stud. Inst. C, Dordrecht, Holland.
  • Wernicke, B., A. M. Friedrich, N. A. Niemi, R. A. Bennett, and J. L. Davis (2000), Dynamics of plate boundary fault systems from Basin and Range Geodetic Network (BARGEN) and geologic data, GSA Today, 10, 17.
  • Wightman, R. H., D. J. Prior, and T. A. Little (2006), Quartz veins deformed by diffusion creep-accommodated grain boundary sliding during a transient, high strain-rate event in the Southern Alps, New Zealand, J. Struct. Geol., 28(5), 902918.