SEARCH

SEARCH BY CITATION

References

  • Alt, J. C., and W. Bach (2006), Oxygen isotope composition of a section of lower oceanic crust, ODP Hole 735B, Geochem. Geophys., Geosyst., 7, Q12008, doi:10.1029/2006GC001385.
  • Alt, J. C., and H. A. D. Teagle (2003), Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: Mineral, chemical, and isotopic evidence from ODP Site 801, Chem. Geol., 201(3–4), 191211.
  • Alt, J. C., K. Muehlenbachs, and J. Honnorez (1986), An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B, Earth Planet. Sci. Lett., 80(3–4), 217229.
  • Barry, P. H. et al. (2013), Helium and carbon isotope systematics of cold “mazuku” CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania, Chem. Geol., 339, 141156.
  • Bedard, J. H. (1993), Oceanic crust as a reactive filter: Synkinematic intrusion, hybridization, and assimilation in an ophiolitic magma chamber, western Newfoundland, Geology, 21(1), 7780.
  • Boudier, F., and A. Nicolas (2011), Axial melt lenses at oceanic ridges: A case study in the Oman ophiolite, Earth Planet. Sci. Lett., 304, 313325.
  • Boudier, F., A. Nicolas, and B. Ildefonse (1996), Magma chambers in the Oman ophiolite: Fed from the top and the bottom, Earth Planet. Sci. Lett., 144, 239250.
  • Bowers, T. S., and P. H. Taylor (1985), An integrated chemical and stable-isotope model of the origin of Mid-ocean Ridge hot spring systems, J. Geophys. Res., 90, 12,58312,606.
  • Boyd, S. R. et al. (1987), Multiple growth events during diamond genesis: An integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones, Earth Planet. Sci. Lett., 86(2–4), 341353.
  • Caporuscio, F., and J. Smyth (1990), Trace element crystal chemistry of mantle eclogites, Contrib. Mineral. Petrol., 105(5), 550561.
  • Carmody, L., A. L. Taylor, Y. Liu, W. J. Valley, and V. Z. Spetsius (2013), Komsomolskaya diamondiferous eclogites: Evidence for oceanic crustal protoliths, under review, Lithos.
  • Cartigny, P. (2005), Stable isotopes and the origin of diamond, Elements, 1(2), 7984.
  • Chacko, T., R. D. Cole, and J. Horita (2001), Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems, Rev. Mineral. Geochem., 43(1), 181.
  • Christova, C., and H. C. Scholz (2003), Stresses in the Vanuatu subducting slab: A test of two hypotheses, Geophys. Res. Lett., 30(15), 1790, doi:10.1029/2003GL017701.
  • Coleman, R. G. (1977), Ophiolites: Ancient Oceanic Lithosphere, 229 pp., Springer, Berlin.
  • Contreras-Reyes, E., I. Grevemeyer, R. E. Flueh, M. Scherwath, and M. Heesemann (2007), Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise, Geochem. Geophys., Geosyst., 8, Q07003, doi:10.1029/2007GC001632.
  • Deines, P. (1980), The carbon isotopic composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition, Geochim. Cosmochim. Acta, 44(7), 943961.
  • Deines, P., and E. S. Haggerty (2000), Small-scale oxygen isotope variations and petrochemistry of ultradeep (>300 km) and transition zone xenoliths, Geochim. Cosmochim. Acta, 64(1), 117131.
  • Deines, P., W. J. Harris, and J. J. Gurney (1987), Carbon isotopic composition, nitrogen content and inclusion composition of diamonds from the Roberts Victor kimberlite, South Africa: Evidence for 13C depletion in the mantle, Geochim. Cosmochim. Acta, 51(5), 12271243.
  • Dewey, J. F. (1976), Ophiolite obduction, Tectonophysics, 31(2), 93120.
  • Dick, H. J. B., J. Lin, and H. Schouten (2003), An ultraslow-spreading class of ocean ridge, Nature, 426, 405412.
  • Dilek, Y., and H. Furnes (2009), Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems, Lithos, 113(1–2), 120.
  • Dilek, Y., and H. Furnes (2011), Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere, Geol. Soc. Am. Bull., 123(3–4), 387411.
  • Dilek, Y., and S. Newcomb (2003), Ophiolite concept and the evolution of geological thought, Spec. Pap. Geol. Soc. Am., 373, 504 pp., Boulder, Colo.
  • Dilek, Y., and A. Polat (2008), Suprasubduction zone ophiolites and Archean tectonics, Geology, 36(5), 431432.
  • Dilek, Y., M. E. Moores, and H. Furnes (1998), Structure of modern oceanic crust and ophiolites and implications for faulting and magmatism at oceanic spreading centers, in Faulting and Magmatism at Mid-Ocean Ridges, Geophys. Monogr. Ser., vol. 106, pp. 219265, AGU, Washington, D. C.
  • Dilek, Y., H. Furnes, and M. Shallo (2007), Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana, Gondwana Res., 11(4), 453475.
  • Dunn, R. A., and R. D. Toomey (2001), Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9°30′N), Earth Planet. Sci. Lett., 189(1–2), 917.
  • Eiler, J. M. (2001), Oxygen isotope variations of basaltic lavas and upper mantle rocks, Rev. Mineral. Geochem., 43(1), 319364.
  • Eiler, J. M., P. Schiano, N. Kitchen, and M. E. Stolper (2000), Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts, Nature, 403(6769), 530534.
  • Faccenda, M., G. T. Gerya, and L. Burlini (2009), Deep slab hydration induced by bending-related variations in tectonic pressure, Nat. Geosci., 2(11), 790793.
  • Gao, Y., J. Hoefs, R. Przybilla, and E. J. Snow (2006), A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B, Chem. Geol., 233(3–4), 217234.
  • Gao, Y. et al. (2012), Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256, Geochem. Geophys. Geosyst., 13, Q10001, doi:10.1029/2012GC004207.
  • Garlick, G. D., D. I. Macgregor, and E. D. Vogel (1971), Oxygen isotope ratios in eclogites from kimberlites, Science, 172(3987), 10251027.
  • Gass, I. G. (1968), Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor?, Nature, 220, 3942.
  • Gregory, R. T., and P. H. Taylor Jr. (1981), An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res., 86, 27372755.
  • Grevemeyer, I. et al. (2005), Heat flow and bending-related faulting at subduction trenches: Case studies offshore of Nicaragua and Central Chile, Earth Planet. Sci. Lett., 236(1–2), 238248.
  • Harper, G. D. (2003), Tectonic implications of boninite, arc tholeiite, and MORB magma types in the Josephine Ophiolite, California-Oregon, Geol. Soc. Spec. Publ., 218(1), 207230.
  • Helmstaedt, H., and R. Doig (1975), Eclogite nodules from kimberlite pipes of the Colorado plateau samples of subducted Franciscan-type oceanic lithosphere, Phys. Chem. Earth, 9, 95111.
  • Henrys, S., et al. (2006), Kinking of the subducting slab by escalator normal faulting beneath the North Island of New Zealand, Geology, 34, 777780.
  • Hilton, D. R., K. Gronvold, E. A. Sveinbjornsdottir, and K. Hammerschmidt (1998), Helium isotope evidence for off-axis degassing of the Icelandic hotspot, Chem. Geol., 149(3–4), 173187.
  • Ivandic, M., I. Grevemeyer, A. Berhorst, R. E. Flueh, and K. McIntosh (2008), Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua, J. Geophys. Res., 113, B05410, doi:10.1029/2007JB005291.
  • Jacob, D. E. (2004), Nature and origin of eclogite xenoliths from kimberlites, Lithos, 77(14), 295316.
  • Jacob, D., E. Jagoutz, D. Lowry, D. Mattey, and G. Kudrjavtseva (1994), Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust, Geochim. Cosmochim. Acta, 58(23), 51915207.
  • Jacob, D. E., S. K. Viljoen, and V. N. Grassineau (2009), Eclogite xenoliths from Kimberley, South Africa—A case study of mantle metasomatism in eclogites, Lithos, 112, 10021013.
  • Javoy, M., F. Pineau, and H. Delorme (1986), Carbon and nitrogen isotopes in the mantle, Chem. Geol., 57(1–2), 4162.
  • Jiao, W., G. P. Silver, Y. Fei, and T. C. Prewitt (2000), Do intermediate-and deep-focus earthquakes occure on preexisting weak zones? An examination of the Tonga subduction zone, J. Geophys. Res., 105, 25,12528,128.
  • Kelemen, P. B., K. Koga, and N. Shimizu (1997), Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust, Earth Planet. Sci. Lett., 146, 475488.
  • Kobayashi, K., M. Nakanishi, K. Tamaki, and Y. Ogawa (1998), Outer slope faulting associated with the western Kuril and Japan trenches, Geophys. J. Int., 134, 356372.
  • Kohn, M. J., and W. J. Valley (1998), Effects of cation substitutions in garnet and pyroxene on equilibrium oxygen isotope fractionations, J. Metamorph. Geol., 16(5), 625639.
  • Korenaga, J., and B. P. Kelemen (1997), Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust, J. Geophys. Res., 102, 27,72927,749.
  • Lawrence, J. R., M. J. Gieskes, and S. W. Broecker (1975), Oxygen isotope and cation composition of DSDP pore waters and the alteration of Layer II basalts, Earth Planet. Sci. Lett., 27(1), 110.
  • Lécuyer, C., and S. Fourcade (1991), Oxygen isotope evidence for multi-stage hydrothermal alteration at a fossil slow-spreading center: The Silurian Trinity ophiolite (California, U.S.A.), Chem. Geol., 87(3–4), 231246.
  • Lecuyer, C., and B. Reynard (1996), High-temperature alteration of oceanic gabbros by seawater (Hess Deep, Ocean Drilling Program Leg 147): Evidence from oxygen isotopes and elemental fluxes, J. Geophys. Res., 101, 15,88315,897.
  • MacLeod, C. J., and D. A. Rothery (1992), Ridge axial segmentation in the Oman ophiolite: evidence from along-strike variations in the sheeted dyke complex, in Ophiolites and their Modern Oceanic Analogues, edited by L. M. Parsons, Geological Society of London, London, pp. 3963.
  • MacLeod, C. J., and G. Yaouancq (2000), A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges, Earth Planet. Sci. Lett., 176(3–4), 357373.
  • Masson, D. G. (1991), Fault patterns at outer trench walls, Mar. Geophys. Res., 13, 209225.
  • Mattey, D., D. Lowry, and C. Macpherson (1994), Oxygen isotope composition of mantle peridotite, Earth Planet. Sci. Lett., 128(3–4), 231241.
  • McClain, J. S., A. J. Orcutt, and M. Burnett (1985), The East Pacific Rise in cross section: A seismic model, J. Geophys. Res., 90, 86278639.
  • Metcalf, R. V., and W. J. Shervais (2008), Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum?, Geol. Soc. Am. Spec. Pap., 438, 191222.
  • Muehlenbachs, K. (1998), The oxygen isotopic composition of the oceans, sediments and the seafloor, Chem. Geol., 145(3–4), 263273.
  • Muehlenbachs, K., and N. R. Clayton (1972), Oxygen isotope studies of fresh and weathered submarine basalts, Can. J. Earth Sci., 9(2), 172184.
  • Neal, C. R. et al. (1990), Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part 2, Sr, Nd, and O isotope geochemistry, Earth Planet. Sci. Lett., 99(4), 362379.
  • Nicolas, A., and F. Boudier (2003), Where ophiolites come from and what they tell us, in Ophiolite Concept and the Evolution of Geological Thought, edited by Y. Dilek and S. Newcomb, pp. 131153, Geol. Soc. of Am., Boulder, Colo.
  • Nicolas, A., F. Boudier, B. Ildefonse, and E. Ball (2000), Accretion of Oman and United Arab Emirates ophiolite–Discussion of a new structural map, Mar. Geophys. Res., 21(3–4), 147180.
  • Obana, K. et al. (2012), Normal-faulting earthquakes beneath the outer slope of the Japan Trench after the 2011 Tohoku earthquake: Implications for the stress regime in the incoming Pacific plate, Geophys. Res. Lett., 39, LG0024, doi:10.1029/2011GL050399.
  • O'Neil, J. R., N. R. Clayton, and K. T. Mayeda (1969), Oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys., 51(12), 55475559.
  • Ongley, J. S., R. A. Basu, and T. Kurtis Kyser (1987), Oxygen isotopes in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor eclogites: Implications for petrogenesis and mantle metasomatism, Earth Planet. Sci. Lett., 83(1–4), 8084.
  • Pallister, J. S., and T. R. Gregory (1983), Composition of the Samail ocean crust, Geology, 11(11), 638642.
  • Pallister, J. S., and A. C. Hopson (1981), Samail Ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber, J. Geophys. Res., 86, 25932644.
  • Pearce, J. A., J. S. Lippard, and S. Roberts (1984), Characteristics and tectonic significance of supra-subduction zone ophiolites, Geol. Soc. Spec. Publ., 16(1), 7794.
  • Pearson, D. G., R. G. Davies, H. P. Nixon, B. P. Greenwood, and P. D. Mattey (1991), Oxygen isotope evidence for the origin of pyroxenites in the Beni Bousera peridotite massif, North Morocco: Derivation from subducted oceanic lithosphere, Earth Planet. Sci. Lett., 102(3–4), 289301.
  • Poreda, R. J., H. Craig, S. Arnórsson, and A. J. Welhan (1992), Helium isotopes in Icelandic geothermal systems: I. 3He, gas chemistry, and 13C relations, Geochim. Cosmochim. Acta, 56(12), 42214228.
  • Quick, J. E., and P. R. Denlinger (1993), Ductile deformation and the origin of layered gabbro in ophiolites, J. Geophys. Res., 98, 14,01514,027.
  • Ranero, C. R., J. Phipps Morgan, K. McIntosh, and C. Reichert (2003), Bending-related faulting and mantle serpentinization at the Middle America trench, Nature, 425(6956), 367373.
  • Ranero, C. R., A. Villasenor, P. J. Morgan, and W. Weinrebe (2005), Relationship between bend-faulting at trenches and intermediate-depth seismicity, Geochem. Geophys. Geosyst., 6, Q12002, doi:10.1029/2005GC000997.
  • Reid, I., and R. H. Jackson (1981), Oceanic spreading rate and crustal thickness, Mar. Geophys. Res., 5(2), 165172.
  • Reid, I., A. J. Orcutt, and A. W. Prothero (1977), Seismic evidence for a narrow zone of partial melting underlying the East Pacific Rise at 21°N, Geol. Soc. Am. Bull., 88(5), 678682.
  • Riches, A. J. V., Y. Liu, D. M. J. Day, V. Z. Spetsius, and A. L. Taylor (2010), Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia, Lithos, 120(3–4), 368378.
  • Robertson, A. H. F. (2002), Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region, Lithos, 65(1–2), 167.
  • Rüpke, L. H., J. Phipps Morgan, M. Hort, and D. A. J. Connolly (2004), Serpentine and the subduction zone water cycle, Earth Planet. Sci. Lett., 223, 1734.
  • Rüpke, L. H., I. Karthik, and I. Grevemeyer (2010), Bend-Faulting, Serpentinization, and Double Seismic Zones—New Insights from Reaction-Transport Modeling, pp. 13854, Eur. Geosci. Union Gen. Assem., Vienna.
  • Schiffman, P., E. A. Williams, and C. R. Evarts (1984), Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California, Earth Planet. Sci. Lett., 70(2), 207220.
  • Schulze, D. J., W. J. Valley, and J. M. Spicuzza (2000), Coesite eclogites from the Roberts Victor kimberlite, South Africa, Lithos, 54(1–2), 2332.
  • Schulze, D. J., R. J. Valley, R. D. Bell, and J. M. Spicuzza (2001), Oxygen isotope variations in Cr-poor megacrysts from kimberlite, Geochim. Cosmochim. Acta, 65(23), 43754384.
  • Searle, M., and Cox, J. (1999), Tectonic setting, origin, and obduction of the Oman ophiolite, Geological Society of America Bulletin, 111(1), 104122.
  • Shervais, J. W. (2001), Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites, Geochem. Geophys. Geosyst., 2(1), doi:10.1029/2000GC000080.
  • Shervais, J. W., et al. (1988), Early Proterozoic oceanic crust and the evolution of subcontinental mantle: Eclogites and related rocks from southern Africa, Geol. Soc. Am. Bull., 100, 411423.
  • Snyder, G. A., et al. (1997), The origins of Yakutian eclogite xenoliths, J. Petrol., 38, 85113.
  • Snyder, G. A., et al. (1999), The diamond-bearing Mir eclogites, Yakutia: Nd and Sr isotopic evidence for a possible early to mid-proterozoic depleted mantle source with arc affinitity, in 7th International Kimberlite Conference, edited by J. J Gurney, J. L Gurney, M. D Pascoe, and S. H. Richardson, pp. 808815, Natl. Printers, South Africa.
  • Sobolev, N. V. (1977), Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle, 260 pp., AGU, Washington, D. C.
  • Sobolev, V. N., A. L. Taylor, and A. G. Snyder (1994), Diamondiferous eclogites from the Udachnaya Kimberlite pipe, Yakutia, Int. Geol. Rev., 36, 4264.
  • Sobolev, N. V. et al. (1997), Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia, Lithos, 39(3–4), 135157.
  • Sobolev, N. V. et al. (2003), Mineral inclusions in diamonds from Komsomolskaya and Krasnopresnenskaya pipes, Yakutia: Evidence for deep lithospheric heterogeneities in Siberian Craton, paper presented at 8th International Kimberlite Conference, Victoria, Canada, De Beers.
  • Sparks, R. S. J., P. Meyer, and H. Sigurdsson (1980), Density variation amongst mid-ocean ridge basalts: Implications for magma mixing and the scarcity of primitive lavas, Earth Planet. Sci. Lett., 46(3), 419430.
  • Spetsius, Z. V., and A. L. Taylor (2008), Diamonds of Yakutia: Photographic Evidence for their Origin, 278 pp., Tranquility Base Press, Lenoir City, Tenn.
  • Spetsius, Z. V., S. A. Ivanov, and I. S. Mityukhin (2006), Diamondiferous xenoliths and megacrysts from the Nyurbinskaya kimberlite pipe (Nakynsky field, Yakutia), Dokl. Earth Sci., 409, 779783.
  • Spetsius, Z.V., et al. (2008), Diamondiferous xenoliths from crustal subduction: Garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia, Eur. J. Mineral., 20(3), 375385.
  • Spivak, A. V., A. Y. Litvin, V. A. Shushkanova, Y. V. Litvin, and A. A. Shiryaev (2008), Diamond formation in carbonate-silicate-sulfide-carbon melts: Raman- and IR-microspectroscopy, Eur. J. Mineral., 20(3), 341347.
  • Stakes, D. S., and P. H. Taylor Jr. (1992), The northern Samail ophiolite: An oxygen isotope, microprobe, and field study, J. Geophys. Res., 97, 70437080.
  • Stakes, D. S., W. J. Shervais, and A. C. Hopson (1984), The volcanic-tectonic cycle of the FAMOUS and AMAR Valleys, Mid-Atlantic Ridge (36°47′N): Evidence from basalt glass and phenocryst compositional variations for a steady state magma chamber beneath the valley midsections, AMAR 3, J. Geophys. Res., 89, 69957028.
  • Stern, R. J., and H. S. Bloomer (1992), Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs, Geol. Soc. Am. Bull., 104(12), 16211636.
  • Taylor, H. P., Jr. (1990), Oxygen and hydrogen isotope constraints on the deep circulation of surface waters into zones of hydrothermal metamophism and melting, in The Role of Fluids in Crustal Processes, pp. 7295, Natl. Acad. Press, Washington, D. C.
  • Taylor, H. P., and F. M. S. Sheppard (1986), Igneous rocks; I, Processes of isotopic fractionation and isotope systematics, Rev. Mineral. Geochem., 16(1), 227271.
  • Taylor, L. A., and M. Anand (2004), Diamonds: Time capsules from the Siberian Mantle, Chem. Erde—Geochemistry, 64(1), 174.
  • Taylor, L. A., and R. C. Neal (1989), Eclogites with oceanic crustal and mantle signatures from the Bellsbank Kimberlite South Africa, Part 1: Mineralogy, petrography, and whole rock chemistry, J. Geol., 97, 551567.
  • Taylor, L. A., M. Anand, P. Promprated, C. Floss, and V. N. Sobolev (2003a), The significance of mineral inclusions in large diamonds from Yakutia, Russia, Am. Mineral., 88, 912920.
  • Taylor, L. A. et al. (2003b), Petrogenesis of group A eclogites and websterites: Evidence from the Obnazhennaya kimberlite, Yakutia, Contrib. Mineral. Petrol., 145(4), 424443.
  • Taylor, L. A. et al. (2003c), Petrogenesis of group A eclogites and websterites: Evidence from the Obnazhennaya kimberlite, Yakutia, Contrib. Mineral. Petrol., 145, 424443.
  • Urey, H. C. (1947), The thermodynamic properties of isotopic substances, J. Chem. Soc., 562581.
  • Valley, J. W. (2003), Oxygen isotopes in zircon, Rev. Mineral. Geochem., 53(1), 343385.
  • Valley, J. W., D. P. Kinny, J. D. Schulze, and J. M. Spicuzza (1998), Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts, Contrib. Mineral. Petrol., 133(1), 111.
  • Valley, J. W., N. I. Bindeman, and H. W. Peck (2003), Empirical calibration of oxygen isotope fractionation in zircon, Geochim. Cosmochim. Acta, 67(17), 32573266.
  • White, R. S., S. R. Detrick, C. M. Sinha, and H. M. Cormier (1984), Anomalous seismic crustal structure of oceanic fracture zones, Geophys. J. R. Astron. Soc., 79(3), 779798.
  • Wilson, D. S. et al. (2006), Drilling to Gabbro in intact ocean crust, Science, 312(5776), 10161020.
  • Wolery, T. J., and H. N. Sleep (1976), Hydrothermal circulation and geochemical flux at mid-ocean ridges, J. Geol., 84(3), 249275.
  • Yang, J., N. R. Edwards, W. J. Molson, and A. E. Sudicky (1996), Fracture-induced hydrothermal convection in the oceanic crust and the interpretation of heat-flow data, Geophys. Res. Lett., 23, 929932.