SEARCH

SEARCH BY CITATION

References

  • Arculus, R. J. (2003), Use and abuse of the terms calcalkaline and calcalkalic, J. Petrol., 44, 929935.
  • Bebout, G. E. (2007), Metamorphic chemical geodynamics of subduction zones, Earth Planet. Sci. Lett., 260, 373393.
  • Bebout, G. E., A. E. Bebout, and C. M. Graham (2007), Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks, Chem. Geol., 239, 284304.
  • Bebout, G. E., J. G. Ryan, W. P. Leeman, and A. E. Bebout (1999), Fractionation of trace elements by subduction-zone metamorphism—Effect of convergent-margin thermal evolution, Earth Planet. Sci. Lett., 171, 6381.
  • Bebout, G. E., P. Agard, K. Kobayashi, T. Moriguti, and E. Nakamura (2013), Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites, Chem. Geol., 342, 120.
  • Becker, N. C. (2005), Recent volcanic and tectonic evolution of the southern Mariana arc, PhD Dissertation thesis, University of Hawai'i, Hawai', pp. 166.
  • Becker, N. C., P. Fryer, and G. F. Moore (2010), Malaguana-Gadao Ridge: Identification and implications of a magma chamber reflector in the southern Mariana Trough, Geochem. Geophys. Geosyst., 11, Q04X13, doi:10.1029/2009GC002719.
  • Bloomer, S. H., and J. W. Hawkins (1983), Gabbroic and ultramafic rocks from the Mariana Trench: An island arc ophiolite, in The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, edited by D. E. Hayes, pp. 294317, Geophysical Monograph Series, Washington, D.C.
  • Chauvel, C., and J. Blichert-Toft (2001), A hafnium isotope and trace element perspective on melting of the depleted mantle, Earth Planet. Sci. Lett., 190, 137151.
  • Class, C., D. M. Miller, S. L. Goldstein, and C. H. Langmuir (2000), Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc, Geochem. Geophys. Geosyst., 1, 130.
  • Deschamps, F., S. Guillot, M. Godard, M. Andreani, and K. Hattori (2011), Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments, Terra Nova, 23, 171178.
  • Deschamps, F., S. Guillot, M. Godard, C. Chauvel, M. Andreani, and K. Hattori (2010), In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones, Chem. Geol., 269, 262277.
  • Elliott, T. R. (2003), Tracers of the slab, in Inside the Subduction Factory, edited by J. Eiler, pp. 2345, Geophysical Monograph Series, Washington, D.C.
  • Elliott, T. R., T. Plank, A. Zindler, W. White, and B. Bourdon (1997), Element transport from slab to volcanic front at the Mariana arc, J. Geophys. Res., B102, 14,99115,019.
  • Escrig, S., A. Bézos, S. L. Goldstein, C. H. Langmuir, and P. J. Michael (2009), Mantle source variations beneath the Eastern Lau spreading center and the nature of subduction components in the Lau basin–Tonga arc system, Geochem. Geophys. Geosyst., 10, Q04014, doi:10.01029/02008gc002281.
  • Evans, B. W., K. Hattori, and A. Baronnet (2013), Serpentinite: What, why, where?, Elements, 9, 99106.
  • Fryer, P. (1993), The relationship between tectonic deformation, volcanism, and fluid venting in the southeastern Mariana convergent plate margin, Proceedings of JAMSTEC, Symposium on Deep Sea Res., 9, 161179.
  • Fryer, P., J. Gharib, K. Ross, I. Savov, and M. J. Mottl (2006), Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts, Geochem. Geophys. Geosyst., 7, Q08014, doi:08010.01029/02005gc001201.
  • Fryer, P., M. Mottl, L. Johnson, J. Haggerty, S. Phipps, and H. Maekawa (1995), Serpentine bodies in the forearcs of western Pacific convergent margins: Origin and associated fluids, in Active Margins and Marginal Basins of the Western Pacific, edited by B. Taylor and J. Natland, pp. 259279, AGU, Washington, D.C.
  • Fryer, P., N. Becker, B. Appelgate, F. Martinez, M. Edwards, and G. Fryer (2003), Why is the Challenger Deep so deep?, Earth Planet. Sci. Lett., 211, 259269.
  • Fryer, P., H. Fujimoto, M. Sekine, L. Johnson, J. Kasahara, H. Masuda, T. Gamo, T. Ishii, M. Ariyoshi, and K. Fujioka (1998), Volcanoes of the southwestern extension of the active Mariana island arc: New swath-mapping and geochemical studies, Isl. Arc, 7, 596607.
  • Gamo, T., et al. (2004), Discovery of a new hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane, Geochem. J., 38, 527534.
  • Gardner, J. V. (2006), Law of the sea Cruise to map the western insular margin and 2500-m isobath of Guam and the northern Mariana islands, Cruise Report, p. 45, University of New Hampshire (UNH), Durham, NH.
  • Gardner, J. V. (2007), U.S. Law of the sea Cruise to map the western insular margin and 2500-m isobath of Guam and the northern mariana islands, Cruise Report, p. 37, University of New Hampshire (UNH), Durham, NH.
  • Gardner, J. V. (2010), U.S. Law of the sea Cruises to map sections of the Mariana trench and the eastern and southern insular margins of Guam and the northern Mariana islands, Cruise Report, p. 82, University of New Hampshire (UNH), Durham, NH.
  • Gribble, R. F., R. J. Stern, S. Newman, S. H. Bloomer, and T. O'Hearn (1998), Chemical and isotopic composition of Lavas from the northern Mariana trough: Implications for magmagenesis in back-arc basins, J. Petrol., 39, 125154.
  • Gribble, R. F., R. J. Stern, S. H. Bloomer, D. Stüben, T. O'Hearn, and S. Newman (1996), MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin, Geochim. Cosmochim. Acta, 60, 21532166.
  • Grove, T. L., R. J. Kinzler, and W. B. Bryan (1992), Fractionation of mid-ocean ridge basalt (MORB), in Mantle Flow and Melt Generation at Mid-Ocean Ridges, edited by J. P. Morgan, D. K. Blackman, and J. M. Sinton, pp. 281310, Geophysical Monograph Series, Washington, D.C.
  • Gvirtzman, Z., and R. J. Stern (2004), Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling, Tectonics, 23, TC2011, doi:2010.1029/2003tc001581.
  • Hacker, B. R. (2008), H2O subduction beyond arcs, Geochem. Geophys. Geosyst., 9, Q03001, doi:03010.01029/02007gc001707.
  • Hart, S. R. (1969), K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts, Earth Planet. Sci. Lett., 6, 295303.
  • Hattori, K. H., and S. Guillot (2003), Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge, Geology, 31, 525528.
  • Hattori, K. H., and S. Guillot (2007), Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones, Geochem. Geophys. Geosyst., 8, Q09010, doi:09010.01029/02007gc001594.
  • Hauff, F., K. Hoernle, and A. Schmidt (2003), Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system, Geochem. Geophys. Geosyst., 4, 8913, doi:8910.1029/2002gc000421.
  • Hawkins, J. W., P. F. Lonsdale, J. D. Macdougall, and A. M. Volpe (1990), Petrology of the axial ridge of the Mariana Trough backarc spreading center, Earth Planet. Sci. Lett., 100, 226250.
  • Hickey-Vargas, R., I. P. Savov, M. Bizimis, T. Ishii, and K. Fujioka (2006), Origin of diverse geochemical signatures in igneous rocks from the West Philippine Basin: Implications for tectonic models, in Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, edited by D. M. Christie et al., pp. 287303, Geophysical monograph Series, Washington, D.C.
  • Hulme, S. M., C. G. Wheat, P. Fryer, and M. J. Mottl (2010), Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone, Geochem. Geophys. Geosyst., 11, Q01X09, doi:10.1029/2009gc002674.
  • Ikeda, Y., K. Nagao, R. J. Stern, M. Yuasa, and S. Newman (1998), Noble gases in pillow basalt glasses from the northern Mariana Trough back-arc basin, Isl. Arc, 7, 471478.
  • Ishizuka, O., M. Yuasa, R. N. Taylor, and I. Sakamoto (2009), Two contrasting magmatic types coexist after the cessation of back-arc spreading, Chem. Geol., 266, 274296.
  • Jenner, F. E., and H. S. C. O'Neill (2012), Analysis of 60 elements in 616 ocean floor basaltic glasses, Geochem. Geophys. Geosyst., 13, Q02005, doi:02010.01029/02011gc004009.
  • Jochum, K. P., and S. P. Verma (1996), Extreme enrichment of Sb, Tl and other trace elements in altered MORB, Chem. Geol., 130, 289299.
  • Johnson, M. C., and T. Plank (1999), Dehydration and melting experiments constrain the fate of subducted sediments, Geochem. Geophys. Geosyst., 1, 126.
  • Kakegawa, T., M. Utsumi, and K. Marumo (2008), Geochemistry of sulfide chimneys and basement pillow lavas at the southern Mariana trough (12.55°N and12.58°N), Resour. Geol., 58, 249266.
  • Kato, T., J. Beavan, T. Matsushima, Y. Kotake, J. T. Camacho, and S. Nakao (2003), Geodetic evidence of back arc spreading in the Mariana Trough, Geophys. Res. Lett., 30, 1625, doi:1610.1029/2002GL016757.
  • Kelley, K. A., and E. Cottrell (2009), Water and the oxidation state of subduction zone magmas, Science, 325, 605607.
  • Kelley, K. A., T. Plank, J. Ludden, and H. Staudigel (2003), Composition of altered oceanic crust at ODP sites 801 and 1149, Geochem. Geophys. Geosyst., 4, 8910, doi:8910.1029/2002GC000435.
  • Kelley, K. A., T. Plank, T. L. Grove, E. M. Stolper, S. Newman, and E. H. Hauri (2006), Mantle melting as a function of water content beneath back-arc basins, J. Geophys. Res., 111, B09208, doi:09210.01029/02005jb003732.
  • Kelley, K. A., T. Plank, S. Newman, E. M. Stolper, T. L. Grove, S. W. Parman, and E. H. Hauri (2010), Mantle melting as a function of water content beneath the Mariana arc, J. Petrol., 51, 17111738.
  • Kent, A. J. R., and T. R. Elliott (2002), Melt inclusions from Marianas arc lavas: Implications for the composition and formation of island arc magmas, Chem. Geol., 183, 263286.
  • Kimura, J.-I., A. Kent, M. C. Rowe, M. Katakuse, F. Nakano, B. R. Hacker, P. E. Van Keken, H. Kawabata, and R. J. Stern (2010), Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes, Geochem. Geophys. Geosyst., 11, Q10011, doi:10010.11029/12010gc003050.
  • Klein, E. M., and C. H. Langmuir (1987), Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92, 80898115.
  • Langmuir, C. H., A. Bezos, S. Escrig, and S. W. Parman (2006), Chemical systematics and hydrous melting of the mantle in back-arc basins, in Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, edited by D. M. Christie et al., pp. 87146, Geophysical Monograph Series, Washington, D.C.
  • Le Bas, M. J. (2000), IUGS reclassification of the high-Mg and Picritic volcanic rocks, J. Petrol., 41, 14671470.
  • Lee, C.-T. A., P. Luffi, T. Plank, H. Dalton, and W. P. Leeman (2009), Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas, Earth Planet. Sci. Lett., 279, 2033.
  • Manning, C. E. (2004), The chemistry of subduction-zone fluids, Earth Planet. Sci. Lett., 223, 116.
  • McCulloch, M. T., and J. A. Gamble (1991), Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358374.
  • Michibayashi, K., Y. Ohara, R. J. Stern, P. Fryer, J.-I. Kimura, M. Tasaka, Y. Harigane, and T. Ishii (2009), Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: Results of a Shinkai 6500 dive, Geochem. Geophys. Geosyst., 10, Q05X06, doi:10.1029/2008GC002197.
  • Miller, M. S., A. Gorbatov, and B. L. N. Kennett (2006), Three-dimensional visualization of a near-vertical slab tear beneath the southern Mariana arc, Geochem. Geophys. Geosyst., 7, Q06012, doi:06010.01029/02005gc001110.
  • Miyashiro, A. (1974), Volcanic rock series in island arcs and active continental margins, Am. J. Sci., 274, 321355.
  • Ohara, Y., and T. Ishii (1998), Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge, Isl. Arc, 7, 541558.
  • Ohara, Y., R. J. Stern, T. Ishii, H. Yurimoto, and T. Yamazaki (2002), Peridotites from the Mariana trough: First look at the mantle beneath an active back-arc basin, Contrib. Mineral. Petrol., 143, 118.
  • Pabst, S., T. Z. Zack, I. P. Savov, T. Ludwig, D. Rost, and E. P. Vicenzi (2011), Evidence for boron incorporation into the serpentine crystal structure, Am. Mineral., 96, 11121119.
  • Pabst, S., T. Zack, I. P. Savov, T. Ludwig, D. Rost, S. Tonarini, and E. P. Vicenzi (2012), The fate of subducted oceanic slabs in the shallow mantle: Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc, Lithos, 132–133, 162179.
  • Parkinson, I. J., and J. A. Pearce (1998), Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting, J. Petrol., 39, 15771618.
  • Pearce, J. A. (2008), Geochemical fingerprintring of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, 100, 1448.
  • Pearce, J. A., and R. J. Stern (2006), Origin of Back-Arc basin magmas: Trace element and isotope perspectives, in Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, edited by D. M. Christie et al., pp. 6386, Geophysical Monograph Series, Washington, D.C.
  • Pearce, J. A., P. D. Kempton, G. M. Nowell, and S. R. Noble (1999), Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific Arc-basin systems, J. Petrol., 40, 15791611.
  • Pearce, J. A., R. J. Stern, S. H. Bloomer, and P. Fryer (2005), Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components, Geochem. Geophys. Geosyst., 6, Q07006, doi:07010.01029/02004GC000895.
  • Peccerillo, A., and S. R. Taylor (1976), Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contrib. Mineral. Petrol., 58, 6381.
  • Plank, T. (2005), Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents, J. Petrol., 46, 921944.
  • Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325394.
  • Reagan, M. K., et al. (2010), Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system, Geochem. Geophys. Geosyst., 11, Q03X12, doi:10.1029/2009GC002871.
  • Ribeiro, J., et al., (2013), Geodynamic evolution of a forearc rift in the southernmost Mariana Arc, Island Arc., doi:10.1111/iar.12039.
  • Ruscitto, D. M., P. J. Wallace, L. B. Cooper, and T. Plank (2012), Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes, Geochem. Geophys. Geosyst., 13, Q03025, doi:03010.01029/02011gc003887.
  • Ryan, J. G., J. Morris, F. Tera, W. P. Leeman, and A. Tsvetkov (1995), Cross-arc geochemical variations in the Kurile arc as a function of slab depth, Science, 270, 625627.
  • Salters, V. J. M., and A. Stracke (2004), Composition of the depleted mantle, Geochem. Geophys. Geosyst., 5, Q05B07, doi:10.1029/2003GC000597.
  • Sato, H., and T. Ishii (2011), Petrology and mineralogy of mantle peridotites from the southern Marianas, in Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin, edited by Y. Ogawa, R. Anma, and Y. Dilek, pp. 129147, Springer, Houten, Netherlands.
  • Savov, I. P., J. G. Ryan, M. D' Antonio, and P. Fryer (2007), Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc, J. Geophys. Res., 112, B09205, doi:09210.01029/02006JB004749.
  • Savov, I. P., J. G. Ryan, M. D' Antonio, K. Kelley, and P. Mattie (2005), Geochemistry of serpentinized peridotites from the Mariana forearc conical seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst., 6, Q04J15, doi:10.1029/2004GC000777.
  • Scambelluri, M., and S. Tonarini (2012), Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle, Geology, 40, 907910.
  • Schmidt, M., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for magma generation, Earth Planet. Sci. Lett., 163, 361379.
  • Shaw, A. M., E. H. Hauri, T. P. Fischer, D. R. Hilton, and K. A. Kelley (2008), Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle, Earth Planet. Sci. Lett., 275, 138145.
  • Shervais, J. W. (1982), Ti-V plots and the petrogenesis of modern and ophiolitic lavas, Earth Planet. Sci. Lett., 59, 101118.
  • Sisson, T. W., and T. L. Grove (1993), Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism, Contrib. Mineral. Petrol., 113, 143166.
  • Smith, W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in tension, Geophysics, 55, 293305.
  • Stern, R. J. (2002), Subduction zones, Rev. Geophys., 40, 37, doi:10.1029/2001RG000108.
  • Stern, R. J., E. Kohut, S. H. Bloomer, M. Leybourne, M. Fouch, and J. Vervoort (2006), Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: No role for sediments, are serpentinites important?, Contrib. Mineral. Petrol., 151, 202221.
  • Stern, R. J., Y. Tamura, H. Masuda, P. Fryer, F. Martinez, O. Ishizuka, and S. H. Bloomer (2013), How the Mariana volcanic arc ends in the south, Isl. Arc, 22, 133148.
  • Straub, S. M., and G. D. Layne (2003), Decoupling of fluids and fluid-mobile elements during shallow subduction: Evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front, Geochem. Geophys. Geosyst., 4, 9004, doi:9010.1029/2002gc000349.
  • Sun, S. S., and W. F. McDonough (1989), Chemical and isotopic systemics of ocean basalt: Implications for mantle composition and processes, in Magmatism in the Ocean Basins, edited by A. D. Saunders and M. J. Norry, pp. 313345, Geological Society of London, Special publications, London.
  • Taylor, B., and F. Martinez (2003), Back-arc basin basalt systematics, Earth Planet. Sci. Lett., 210, 481497.
  • Todt, W., R. Cliff, A. Hanser, and A. Hofmann (1996), Evaluation of a 202Pb – 205Pb double spike for high – precision lead isotope analysis, in Earth Processes: Reading the Isotopic Code, edited by A. Basu and S. Hart, pp. 429437, Geophysical Monograph Series, Washington, D.C.
  • Van Keken, P. E., B. R. Hacker, E. M. Syracuse, and G. A. Abers (2011), Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res. Solid Earth, 116, B01401, doi:01410.01029/02010jb007922.
  • Volpe, A. M., J. Douglas Macdougall, and J. W. Hawkins (1987), Mariana trough basalts (MTB): Trace element and SrNd isotopic evidence for mixing between MORB-like and Arc-like melts, Earth Planet. Sci. Lett., 82, 241254.
  • Volpe, A. M., J. Douglas Macdougall, G. W. Lugmair, J. W. Hawkins, and P. F. Lonsdale (1990), Fine-scale isotopic variation in Mariana trough basalts: Evidence for heterogeneity and a recycled component in backarc basin mantle, Earth Planet. Sci. Lett., 100, 251264.
  • Wada, I., C. A. Rychert, and K. Wang (2011), Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow, Geophys. Res. Lett., 38, L13308, doi:13310.11029/12011gl047705.
  • Wada, I., K. Wang, J. He, and R. D. Hyndman (2008), Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization, J. Geophys. Res. Solid Earth, 113, B04402, doi:10.1029/2007JB005190.
  • Wade, J. A., et al. (2005), The may 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano, J. Volcanol. Geoth. Res., 146, 139170.
  • Wessel, P., and W. H. F. Smith (1995), New version of the generic mapping tools released, EOS Trans. AGU, 76, 329.
  • Wessel, P., and W. H. F. Smith (1998), New, improved version of generic mapping tools released, in EOS Transactions American Geophysical Union, 79, 579, Washington, D.C.
  • Woodhead, J. D. (1989), Geochemistry of the Mariana arc (Western Pacific): Source composition and processes, Chem. Geol., 76, 124.
  • Woodhead, J. D., R. J. Stern, J. A. Pearce, J. M. Hergt, and J. Vervoort (2012), Hf-Nd isotope variation in Mariana Trough basalts: The importance of “ambient mantle” in the interpretation of subduction zone magmas, Geology, 40, 539542.
  • Zack, T., T. Rivers, and S. Foley (2001), Cs-Rb-Ba systematics in phengite and amphibole: An assessment of fluid mobility at 2.0 GPa in eclogites from Trescolmen, Central Alps, Contrib. Mineral. Petrol., 140, 651669.