SEARCH

SEARCH BY CITATION

References

  • Agard, P., P. Yamato, L. Jolivet, and E. Burov (2009), Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms, Earth Sci. Rev., 92, 5379.
  • Angiboust, S., P. Agard, L. Jolivet, and O. Beyssac (2009), The Zermatt-Saas ophiolite: The largest (60-km wide) and deepest (c. 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone?, Terra Nova, 21, 171180.
  • Barnes, J. D., and M. Cisneros (2012), Mineralogical control on the chlorine isotope composition of altered oceanic crust, Chem. Geol., 326–327, 5160.
  • Barnes, J. D., and Z. D. Sharp (2006), A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: Insights into the serpentinization process, Chem. Geol., 228, 246265.
  • Barnes, J. D., J. Selverstone, and Z. D. Sharp (2006), Chlorine isotope chemistry of serpentinites from Elba, Italy, as an indicator of fluid source and subsequent tectonic history, Geochem. Geophys. Geosyst., 7, Q08015, doi:10.1029/2006GC001296.
  • Barnes, J. D., Z. D. Sharp, and T. P. Fischer (2008), Chlorine isotope variations across the Izu-Bonin-Mariana arc, Geology, 36, 883886.
  • Barnes, J. D., H. Paulick, Z. D. Sharp, W. Bach, and G. Beaudoin (2009a), Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209), Lithos, 110, 8394.
  • Barnes, J. D., Z. D. Sharp, T. P. Fischer, D. R. Hilton, and M. J. Carr (2009b), Chlorine isotope variations along the Central American volcanic front and back arc, Geochem. Geophys. Geosyst., 10, Q11S17, doi:10.1029/2009GC002587.
  • Barnicoat, A. C., and S. A. Bowtell (1995), Sea-floor hydrothermal alteration in metabasites from high-pressure ophiolites of the Zermatt-Aosta area of the Western Alps, Boll. Mus. Reg. Sci. Nat., 13, 191220.
  • Barnicoat, A. C., and I. Cartwright (1995), Focused fluid-flow during subduction—Oxygen isotope data from high-pressure ophiolites of the Western Alps, Earth Planet. Sci. Lett., 132, 5361.
  • Barnicoat, A. C., N. Fry, P. Bearth, and H. Schwander (1986), High-pressure metamorphism of the Zermatt-Saas ophiolite zone, Switzerland: The post-Triassic sediments of the ophiolite zone Zermatt-Saas Fee and the associated manganese mineralizations, J. Geol. Soc. London, 143, 607618.
  • Bebout, G. E., J. G. Ryan, and W. P. Leeman (1993), B-Be systematics in subduction-related metamorphic rocks—Characterization of the subducted component, Geochim. Cosmochim. Acta, 57, 22272237.
  • Bebout, G., P. Agard, K. Kobayashi, T. Moriguti, and E. Nakamura (2013), Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites, Chem. Geol., 342, 120.
  • Beltrando, M., R. Compagnoni, and B. Lombardo (2010), (Ultra-) High-pressure metamorphism and orogenesis: An Alpine perspective, Gondwana Res., 18, 147166.
  • Bonifacie, M., J. L. Charlou, N. Jendrzejewski, P. Agrinier, and J. P. Donval (2005), Chlorine isotopic compositions of high temperature hydrothermal vent fluids over ridge axes, Chem. Geol., 221, 279288.
  • Bonifacie, M., C. Monnin, N. Jendrzejewski, P. Agrinier, and M. Javoy (2007), Chlorine stable isotopic composition of basement fluids of the eastern flank of the Juan de Fuca Ridge (ODP Leg 168), Earth Planet. Sci. Lett., 260, 1022.
  • Bonifacie, M., V. Busigny, C. Mevel, P. Philippot, P. Agrinier, N. Jendrzejewski, M. Scambelluri, and M. Javoy (2008), Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes, Geochim. Cosmochim. Acta, 72, 126139.
  • Brenan, J. M., F. J. Ryerson, and H. F. Shaw (1998), The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models, Geochim. Cosmochim. Acta, 62, 33373347.
  • Bucher, K., and X. P. Li (2007), Serpentinites of the Tethys lithosphere and their role in the exhumation of the HPLT Zermatt-Saas ophiolites, Geochim. Cosmochim. Acta, 71, A129A129.
  • Bucher, K., Y. Fazis, C. De Capitani, and R. Grapes (2005), Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite: High-pressure metamorphism of subducted Tethys lithosphere, Am. Mineral., 90, 821835.
  • Busigny, V., P. Cartigny, P. Philippot, M. Ader, and M. Javoy (2003), Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: Evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe), Earth Planet. Sci. Lett., 215, 2742.
  • Cartwright, I., and A. C. Barnicoat (1999), Stable isotope geochemistry of Alpine ophiolites: A window to ocean-floor hydrothermal alteration and constraints on fluid-rock interaction during high-pressure metamorphism, Int. J. Earth Sci., 88, 219235.
  • Cartwright, I., and A. C. Barnicoat (2002), Petrology, geochronology, and tectonics of shear zones in the Zermatt-Saas and Combin zones of the Western Alps, J. Metamorphic Geol., 20, 263281.
  • Compagnoni, R. (2003), HP metamorphic belt of the western Alps, Episodes, 26, 200204.
  • Dal Piaz, G. V., and W. G. Ernst (1978), Areal geology and petrology of eclogites and associated metabasites of the Piemonte ophiolite nappe, Breuil-St. Jacques area, Italian Western Alps, Tectonophysics, 51, 99126.
  • Dal Piaz, G. V., G. Di Battistini, G. Gosso, G. Venturelli, and Anonymous (1979), Micascisti granatiferi a relitti di omfacite e quarziti a glaucofane e granato nell'unita di Zermatt-Saas della falda ofiolitica piemontese tra St. Jacques ed il Breuil, Rend. Soc. Ital. Mineral. Petrol., 35, 815830.
  • Dal Piaz, G. V., G. Cortiana, A. Del Moro, S. Martin, G. Pennacchioni, and P. Tartarotti (2001), Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, western Alps, Int. J. Earth Sci., 90, 668684.
  • Day, H. W. (2012), A revised diamond-graphite transition curve, Am. Mineral., 97, 5262.
  • Faccenda, M., T. V. Gerya, and L. Burlini (2009), Deep slab hydration induced by bending-related variations in tectonic pressure, Nat. Geosci., 2, 790793.
  • Faccenda, M., T. V. Gerya, N. S. Mancktelow, and L. Moresi (2012), Fluid flow during slab unbending and dehydration: Implications for intermediate-depth seismicity, slab weakening and deep water recycling, Geochem. Geophys. Geosys., 13, Q01010, doi:10.1029/2011GC003860.
  • Ferrando, S., M. L. Frezzotti, P. Orione, R. C. Conte, and R. Compagnoni (2010), Late-Alpine rodingitization in the Bellecombe meta-ophiolites (Aosta Valley, Italian Western Alps): Evidence from mineral assemblages and serpentinization-derived H2-bearing brine, Int. Geol. Rev., 52, 12201243.
  • Fontana, E., M. Panseri, and P. Tartarotti (2008), Oceanic relict textures in the Mount Avic serpentinites, western Alps, Ofioliti, 33, 105118.
  • Frezzotti, M. L., J. Selverstone, Z. Sharp, and R. Compagnoni (2011), Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps, Nat. Geosci., 4, 703706.
  • Früh-Green, G. L., M. Scambelluri, and F. Vallis (2001), O-H isotope ratios of high pressure ultramafic rocks: Implications for fluid sources and mobility in the subducted hydrous mantle, Contrib. Mineral. Petrol., 141, 145159.
  • Getty, S. R., and J. Selverstone (1994), Stable isotopic and trace element evidence for restricted fluid migration in 2 GPa eclogites, J. Metamorphic Geol., 12, 747760.
  • Godon, A., N. Jendrzejewski, M. Castrec-Rouelle, A. Dia, F. Pineau, J. Boulegue, and M. Javoy (2004a), Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex, Geochim. Cosmochim. Acta, 68, 21532165.
  • Godon, A., N. Jendrzejewski, H. G. M. Eggenkamp, D. A. Banks, M. Ader, M. L. Coleman, and F. Pineau (2004b), A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material, Chem. Geol., 207, 112.
  • Groppo, C., M. Beltrando, and R. Compagnoni (2009), The P-T path of the ultra-high pressure Lago di Cignana and adjoining high-pressure meta-ophiolitic units: Insights into the evolution of the subducting Tethyan slab, J. Metamorphic Geol., 27, 207231.
  • Hacker, B. R. (2008), H2O subduction beyond arcs, Geochem. Geophys. Geosyst., 9, Q03001, doi:10.1029/2007GC001707.
  • Halama, R., G. E. Bebout, T. John, and V. Schenk (2010), Nitrogen recycling in subducted oceanic lithosphere: The record in high- and ultrahigh-pressure metabasaltic rocks, Geochim. Cosmochim. Acta, 74, 16361652.
  • Halama, R., G. E. Bebout, T. John, and M. Scambelluri (2012), Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle, Int. J. Earth. Sci., 1–19, doi:10.1007/s00531-012-0782-3.
  • Herms, P., T. John, R. J. Bakker, and V. Schenk (2012), Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex, Ecuador), Chem. Geol., 310, 7996.
  • Humphris, S. E., J. C. Alt, D. A. H. Teagle, and J. J. Honnorez (1998), Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound, Proc. Ocean Drill. Program Sci. Results, 158, 255276.
  • Jarrard, R. D. (2003), Subduction fluxes of water, carbon dioxide, chlorine, and potassium, Geochem. Geophys. Geosyst., 4(5), 8905, doi:10.1029/2002GC000392.
  • John, T., R. Klemd, J. Gao, and C. D. Garbe-Schonberg (2008), Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China), Lithos, 103, 124.
  • John, T., G. D. Layne, K. M. Haase, and J. D. Barnes (2010), Chlorine isotope evidence for crustal recycling into the Earth's mantle, Earth Planet. Sci. Lett., 298, 175182.
  • John, T., M. Scambelluri, M. Frische, J. D. Barnes, and W. Bach (2011), Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle, Earth Planet. Sci. Lett., 308, 6576.
  • John, T., N. Gussone, Y. Y. Podladchikov, G. E. Bebout, R. Dohmen, R. Halama, R. Klemd, T. Magna, and H.-M. Seitz (2012), Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs, Nat. Geosci., 5, 489492.
  • Lassiter, J. C. (2004), Role of recycled oceanic crust in the potassium and argon budget of the Earth: Toward a resolution of the “missing argon” problem, Geochem. Geophys. Geosyst., 5, Q11012, doi:10.1029/2004GC000711.
  • Li, X.-P., M. Rahn, and K. Bucher (2004a), Metamorphic processes in rodingites of the Zermatt-Saas ophiolites, Int. Geol. Rev., 46, 2851.
  • Li, X. P., M. Rahn, and K. Bucher (2004b), Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution, J. Metamorphic Geol., 22, 159177.
  • Liebscher, A., J. Barnes, and Z. Sharp (2006), Chlorine isotope vapor-liquid fractionation during experimental fluid-phase separation at 400°C/23 MPa to 450°C/42 MPa, Chem. Geol., 234, 340345.
  • Mahlen, N. J., S. Skora, C. M. Johnson, L. P. Baumgartner, T. J. Lapen, B. L. Beard, and S. Pilet (2005), Lu-Hf geochronology of eclogites from Pfulwe, Zermatt-Saas ophiolite, western Alps, Switzerland, Geochim. Cosmochim. Acta, 69, A305A305.
  • Manning, C. E. (2004a), The chemistry of subduction-zone fluids, Earth Planet. Sci. Lett., 223, 116.
  • Manning, C. E. (2004b), Polymeric silicate complexing in aqueous fluids at high pressure and temperature, and its implications for water-rock interaction, in Proceedings of the 11th International Symposium on Water-Rock Interaction, edited by R. B. Wanty and R. R. I. Seal, pp. 4549, Taylor and Francis, London.
  • Martin, S., G. Godard, and G. Rebay (2004), Walking on a palaeo ocean floor: The subducted Tethys in the Western Alps—An excursion guide, J. Virtual Explorer, 16 (2), 46.
  • Martin, S., G. Rebay, J. R. Kienast, and C. Mevel (2008), An eclogitised oceanic palaeo-hydrothermal field from the St. Marcel Valley (Italian Western Alps), Ofioliti, 33, 4963.
  • McCaig, A. M., R. A. Cliff, J. Escartin, A. E. Fallick, and C. J. MacLeod (2007), Oceanic detachment faults focus very large volumes of black smoker fluids, Geology, 35, 935938.
  • Mirwald, P. W., and H. J. Massonne (1980), The low-high quartz and quartz-coesite transition to 40 kbar between 600° and 1600°C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition, J. Geophys. Res., 85, 69836990.
  • Panseri, M., E. Fontana, and P. Tartarotti (2008), Evolution of rodingitic dykes: Metasomatism and metamorphism in the Mount Avic serpentinites (Alpine ophiolites, southern Aosta Valley), Ofioliti, 33, 165185.
  • Philippot, P., and J. Selverstone (1991), Trace-element-rich brines in eclogitic veins—Implications for fluid composition and transport during subduction, Contrib. Mineral. Petrol., 106, 417430.
  • Philippot, P., P. Agrinier, and M. Scambelluri (1998), Chlorine cycling during subduction of altered oceanic crust, Earth Planet. Sci. Lett., 161, 3344.
  • Pleuger, J., S. Roller, J. M. Walter, E. Jansen, and N. Froitzheim (2007), Structural evolution of the contact between two Penninic nappes (Zermatt-Saas zone and Combin zone, Western Alps) and implications for the exhumation mechanism and palaeogeography, Int. J. Earth Sci., 96, 229252.
  • Putlitz, B., A. Matthews, and J. W. Valley (2000), Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): Implications for the subduction of oceanic crust, Contrib. Mineral. Petrol., 138, 114126.
  • Ranero, C. R., J. P. Morgan, K. McIntosh, and C. Reichert (2003), Bending-related faulting and mantle serpentinization at the Middle America trench, Nature, 425, 367373.
  • Ransom, B., A. J. Spivack, and M. Kastner (1995), Stable Cl isotopes in subduction-zone pore waters: Implications for fluid-rock reactions and the cycling of chlorine, Geology, 23, 715718.
  • Rebay, G., and R. Powell (2012), Eclogite-facies sea-floor hydrothermally altered rocks: Calculated phase equilibria for an example from the Western Alps at Servette, Ofioliti, 37, 5563.
  • Reinecke, T. (1991), Very-high-pressure metamorphism and uplift of coesite-bearing metasediments from the Zermatt-Saas Zone, Western Alps, Eur. J. Mineral., 3, 717.
  • Reinecke, T. (1998), Prograde high- to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas Zone, western Alps, Lithos, 42, 147189.
  • Ring, U. (1995), Horizontal contraction or horizontal extension: Heterogeneous late Eocene and early Oligocene general shearing during blueschist and greenschist facies metamorphism at the Pennine-Austroalpine boundary zone in the Western Alps, Geol. Rundsch., 84, 843859.
  • Rossetti, P., G. D. Gatta, V. Diella, S. Carbonin, A. Della Giusta, and A. Ferrario (2009), The magnetite ore districts of the southern Aosta Valley (Western Alps, Italy): A mineralogical study of metasomatized chromite ore, Mineral. Mag., 73, 737751.
  • Rubatto, D., D. Gebauer, and M. Fanning (1998), Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: Implications for the geodynamic evolution of the Central and Western Alps, Contrib. Miner. Petrol., 132, 269287.
  • Rüpke, L. H., J. P. Morgan, M. Hort, and J. A. D. Connolly (2004), Serpentine and the subduction zone water cycle, Earth Planet. Sci. Lett., 223, 1734.
  • Scambelluri, M., O. Muntener, L. Ottolini, T. T. Pettke, and R. Vannucci (2004), The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids, Earth Planet. Sci. Lett., 222, 217234.
  • Schauble, E. A., G. R. Rossman, and H. P. Taylor (2003), Theoretical estimates of equilibrium chlorine-isotope fractionations, Geochim. Cosmochim. Acta, 67, 32673281.
  • Selverstone, J., and Z. D. Sharp (2011), Chlorine isotope evidence for multicomponent mantle metasomatism in the Ivrea Zone, Earth Planet. Sci. Lett., 310, 429440.
  • Selverstone, J., G. Franz, S. Thomas, and S. Getty (1992), Fluid variability in 2 GPa eclogites as an indicator of fluid behavior during subduction, Contrib. Miner. Petrol., 112, 341357.
  • Seyfried, W. E., and J. L. Bischoff (1981), Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals, Geochim. Cosmochim. Acta, 45, 135147.
  • Seyfried, W. E., and M. J. Mottl (1982), Hydrothermal alteration of basalt by seawater under seawater-dominated conditions, Geochim. Cosmochim. Acta, 46, 9851002.
  • Sharp, Z., and D. S. Draper (2013), The chlorine abundance of Earth: Implications for a habitable planet, Earth Planet. Sci. Lett., 369, 7177, doi:10.1016/j.epsl.2013.03.005.
  • Sharp, Z. D., E. J. Essene, and J. C. Hunziker (1993), Stable isotope geochemistry and phase equilibria of coesite-bearing whiteschists, Dora Maira massif, Western Alps, Contrib. Mineral. Petrol., 114, 112.
  • Sharp, Z. D., J. D. Barnes, A. J. Brearley, M. Chaussidon, T. P. Fischer, and V. S. Kamenetsky (2007), Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites, Nature, 446, 10621065.
  • Sharp, Z. D., J. A. Mercer, R. H. Jones, A. J. Brearley, J. Selverstone, A. Bekker, and T. Stachel (2013), The chlorine isotope composition of chondrites and Earth, Geochim. Cosmochim. Acta, 107, 189204.
  • Spandler, C., and J. Hermann (2006), High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones, Lithos, 89, 135153.
  • Spandler, C., and C. Pirard (2013), Element recycling from subducting slabs to arc crust: A review, Lithos, 170–171, 208223.
  • Spandler, C., J. Mavrogenes, and J. Hermann (2007), Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions, Chem. Geol., 239, 228249.
  • Spandler, C., T. Pettke, and D. Rubatto (2011), Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones, J. Petrol., 52, 12071236.
  • Straub, S. M., and G. D. Layne (2003), Decoupling of fluids and fluid-mobile elements during shallow subduction: Evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front, Geochem. Geophys. Geosyst., 4(7), 9003, doi:10.1029/2002GC000349.
  • Teagle, D. A. H., and J. C. Alt (2004), Hydrothermal alteration of basalts beneath the Bent Hill massive sulfide deposit, Middle Valley, Juan de Fuca Ridge, Econ. Geol., 99, 561584.
  • Tumiati, S., S. Martin, and G. Godard (2010), Hydrothermal origin of manganese in the high-pressure ophiolite metasediments of Praborna ore deposit (Aosta Valley, Western Alps), Eur. J. Mineral., 22, 577594.
  • Ulmer, P., and V. Trommsdorff (1995), Serpentine stability to mantle depths and subduction-related magmatism, Science, 268, 858861.
  • van Keken, P. E., B. R. Hacker, E. M. Syracuse, and G. A. Abers (2011), Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., 116, B01401, doi:10.1029/2010JB007922.
  • Whitney, D. L., and B. W. Evans (2010), Abbreviations for names of rock-forming minerals. Amer. Mineral., 95, 185187.
  • Zack, T., and T. John (2007), An evaluation of reactive fluid flow and trace element mobility in subducting slabs, Chem. Geol., 239, 199216.