• 1
    Rackley S, Carbon Capture and Storage. Elsevier, Burlington, Oxford, UK (2010).
  • 2
    ESRL, Trends in Atmospheric Carbon Dioxide. ESRL's Global Monitoring Division (2010).
  • 3
    Feely RA, Doney SC and Cooley SR, Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22:3647 (2009).
  • 4
    Rochelle GT, Amine scrubbing for CO2 capture. Science 325:16521654 (2009).
  • 5
    Yeh JT, Resnik KP, Rygle K and Pennline HW, Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process Technol 86:15331546 (2005).
  • 6
    Xu X, Song C, Andresen JM, Miller BG and Scaroni AW, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energ Fuel 16:14631469 (2002).
  • 7
    Yamasaki A, An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J Chem Eng Jpn 36:361375 (2003).
  • 8
    Chue KT, Kim JN, Yoo YJ, Cho SH and Yang RT, Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind Eng Chem Res 34:591598 (1995).
  • 9
    Díaz E, Muñoz E, Vega A and Ordóñez S, Enhancement of the CO2 retention capacity of X zeolites by Na- and Cs-treatments. Chemosphere 70:13751382 (2008).
  • 10
    Zhang J, Webley PA and Xiao P, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energ Convers Manage 49:346356 (2008).
  • 11
    Li H, Eddaoudi M, O'Keeffe M and Yaghi OM, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276279 (1999).
  • 12
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M and Yaghi OM, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469472 (2002).
  • 13
    Wang Z and Cohen SM, Postsynthetic modification of metal-organic frameworks. Chem Soc Rev 38:13151329 (2009).
  • 14
    Yaghi OM and Li Q, Reticular chemistry and metal-organic frameworks for clean energy. MRS Bull 34:682690 (2009).
  • 15
    Murray LJ, Dincǎ M and Long JR, Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:12941314 (2009).
  • 16
    Li J-R, Kuppler RJ and Zhou H-C, Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:14771504 (2009).
  • 17
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST and Hupp JT, Metal-organic framework materials as catalysts. Chem Soc Rev 38:14501459 (2009).
  • 18
    Zou R, Abdel-Fattah AI, Xu H, Zhao Y and Hickmott DD, Storage and separation applications of nanoporous metal-organic frameworks. CrystEngComm 12:13371353 (2010).
  • 19
    Ferey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn PL et al., Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40:550562 (2011).
  • 20
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR et al., Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724781 (2011).
  • 21
    Li JR, Sculley J and Zhou HC, Metal-organic frameworks for separations. Chem Rev 112:869932 (2012).
  • 22
    Li J-R, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong H-K et al., Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:17911823 (2011).
  • 23
    Liu J, Thallapally PK, McGrail BP and Brown DR, Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem Soc Rev 41:23082322 (2012).
  • 24
    Demirbas A, Carbon dioxide emissions and carbonation sensors. Energ Source Part A 30:70 (2008).
  • 25
    Granite EJ and Pennline HW, Photochemical removal of mercury from flue gas. Ind Eng Chem Res 41:54705476 (2002).
  • 26
    Millward AR and Yaghi OM, Metal—organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:1799817999 (2005).
  • 27
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E et al., Ultrahigh porosity in metal-organic frameworks. Science 329:424428 (2010).
  • 28
    Britt D, Furukawa H, Wang B, Glover TG and Yaghi OM, Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci USA 106:2063720640 (2009).
  • 29
    Myers AL and Prausnitz JM, Thermodynamics of mixed-gas adsorption. AIChE J 11:121127 (1965).
  • 30
    Wu H, Reali RS, Smith DA, Trachtenberg MC and Li J, Highly selective CO2 capture by a flexible microporous metal–organic framework (MMOF) material. Chem Eur J 16:1395113954 (2010).
  • 31
    Choi H-S and Suh MP, Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew Chem 121:69977001 (2009).
  • 32
    Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM and Stoddart JF, Strong and reversible binding of carbon dioxide in a green metal–organic framework. J Am Chem Soc 133:1531215315 (2011).
  • 33
    Southon PD, Price DJ, Nielsen PK, McKenzie CJ and Kepert CJ, Reversible and selective O2 chemisorption in a porous metal–organic host material. J Am Chem Soc 133:1088510891 (2011).
  • 34
    Farha OK, Özgür Yazaydın A, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG et al., De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944948 (2010).
  • 35
    D'Alessandro DM, Smit B and Long JR, Carbon dioxide capture: Prospects for new materials. Angew Chem Int Ed 49:60586082 (2010).
  • 36
    Jin Y, Voss BA, Jin A, Long H, Noble RD and Zhang W, Highly CO2-selective organic molecular cages: What determines the CO2 selectivity. J Am Chem Soc 133:66506658 (2011).
  • 37
    Keskin S, van Heest TM and Sholl DS, Can metal–organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3:879891 (2010).
  • 38
    Granite EJ and Pennline HW, Photochemical removal of mercury from flue gas. Ind Eng Chem Res 41:54705476 (2002).
  • 39
    Yazaydın Aozr, Benin AI, Faheem SA, Jakubczak P, Low JJ, Willis RR and Snurr RQ, Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem Mater 21:14251430 (2009).
  • 40
    Kizzie AC, Wong-Foy AG and Matzger AJ, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27:63686373 (2011).
  • 41
    Liu J, Tian J, Thallapally PK and McGrail BP, Selective CO2 capture from flue gas using metal–organic frameworks–A fixed bed study. J Phys Chem C 116:95759581 (2012).
  • 42
    Wu H, Simmons JM, Srinivas G, Zhou W and Yildirim T, Adsorption sites and binding nature of CO2 in prototypical metal—organic frameworks: A combined neutron diffraction and first-principles study. J Phys Chem Lett 1:19461951 (2010).
  • 43
    Wu H, Simmons JM, Liu Y, Brown CM, Wang X-S, Ma S et al., Metal–organic frameworks with exceptionally high methane uptake: Where and how is methane stored? Chem Eur J 16:52055214 (2010).
  • 44
    Vaidhyanathan R, Iremonger SS, Shimizu GKH, Boyd PG, Alavi S and Woo TK, Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330:650653 (2010).
  • 45
    Chen YF, Nalaparaju A, Eddaoudi M and Jiang JW, CO2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study. Langmuir 28:39033910 (2012).
  • 46
    Zhang W, Huang H, Zhong C and Liu D, Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: a combined experimental and molecular simulation study. Phys Chem Chem Phys 14:23172325 (2012).
  • 47
    Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S and Lillerud KP, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:1385013851 (2008).
  • 48
    Li B, Zhang Z, Li Y, Yao K, Zhu Y, Deng Z et al., Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal–organic framework. Angew Chem Int Ed 51:14121415 (2012).
  • 49
    Caskey SR, Wong-Foy AG and Matzger AJ, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:1087010871 (2008).
  • 50
    Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M and Yaghi OM, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:38753877 (2009).
  • 51
    Han ZB, Lu RY, Liang YF, Zhou YL, Chen Q and Zeng MH, Mn(II)-based porous metal-organic framework showing metamagnetic properties and high hydrogen adsorption at low pressure. Inorg Chem 51:674679 (2012).
  • 52
    Babarao R and Jiang JW, Cation characterization and CO2 capture in Li+-exchanged metal—organic frameworks: From first-principles modeling to molecular simulation. Ind Eng Chem Res 50:6268 (2010).
  • 53
    Bae Y-S, Hauser BG, Farha OK, Hupp JT and Snurr RQ, Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Micropor Mesopor Mat 141:231235 (2011).
  • 54
    Si X, Zhang J, Li F, Jiao C, Wang S, Liu S et al., Adjustable structure transition and improved gases (H2, CO2) adsorption property of metal-organic framework MIL-53 by encapsulation of BNHx. Dalton Trans 41:31193122 (2012).
  • 55
    Pachfule P, Chen Y, Jiang J and Banerjee R, Experimental and computational approach of understanding the gas adsorption in amino functionalized interpenetrated metal organic frameworks (MOFs). J Mater Chem 21:1773717745 (2011).
  • 56
    Serra-Crespo P, Ramos-Fernandez EV, Gascon J and Kapteijn F, Synthesis and characterization of an amino functionalized MIL-101(Al): Separation and catalytic properties. Chem Mater 23:25652572 (2011).
  • 57
    Couck S, Gobechiya E, Kirschhock CEA, Serra-Crespo P, Juan-Alcañiz J, Martinez Joaristi A et al., Adsorption and separation of light gases on an amino-functionalized metal–organic framework: An adsorption and in situ XRD study. Chemsuschem 5:740750 (2012).
  • 58
    Yuan B, Ma D, Wang X, Li Z, Li Y, Liu H and He D, A microporous, moisture-stable, and amine-functionalized metal-organic framework for highly selective separation of CO2 from CH4. Chem Commun 48:11351137 (2012).
  • 59
    Vaidhyanathan R, Iremonger SS, Shimizu GK, Boyd PG, Alavi S and Woo TK, Competition and cooperativity in carbon dioxide sorption by amine-functionalized metal-organic frameworks. Angew Chem Int Ed Engl 51:18261829 (2012).
  • 60
    Duan J, Yang Z, Bai J, Zheng B, Li Y and Li S, Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: experimental and theoretical studies. Chem Commun 48:30583060 (2012).
  • 61
    Zheng B, Yang Z, Bai J, Li Y and Li S, High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chem Commun DOI:10.1039/C2CC17593B (2012).
  • 62
    Ling Y, Yang F, Deng M, Chen Z, Liu X, Weng L and Zhou Y, Novel iso-reticular Zn(ii) metal-organic frameworks constructed by trinuclear-triangular and paddle-wheel units: Synthesis, structure and gas adsorption. Dalton Trans 41:40074011 (2012).
  • 63
    Pachfule P, Das R, Poddar P and Banerjee R, Solvothermal synthesis, structure, and properties of metal organic framework isomers derived from a partially fluorinated link. Cryst Growth Des 11:12151222 (2011).
  • 64
    Hulvey Z, Sava DA, Eckert J and Cheetham AK, Hydrogen storage in a highly interpenetrated and partially fluorinated metal—organic framework. Inorg Chem 50:403405 (2010).
  • 65
    Pachfule P, Das R, Poddar P and Banerjee R, Structural, magnetic, and gas adsorption study of a series of partially fluorinated metal—organic frameworks (HF-MOFs). Inorg Chem 50:38553865 (2011).
  • 66
    Pachfule P, Chen Y, Jiang J and Banerjee R, Fluorinated metal-organic frameworks: Advantageous for higher H2 and CO2 adsorption or not? Chem Eur J 18:688694 (2012).
  • 67
    Bae Y-S, Farha OK, Hupp JT and Snurr RQ, Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19:21312134 (2009).
  • 68
    Demessence A, D'Alessandro DM, Foo ML and Long JR, Strong CO2 binding in a water-stable, triazolate-bridged metal—organic framework functionalized with ethylenediamine. J Am Chem Soc 131:87848786 (2009).
  • 69
    Volkringer C, Popov D, Loiseau T, Guillou N, Ferey G, Haouas M et al., A microdiffraction set-up for nanoporous metal-organic-framework-type solids. Nat Mater 6:760764 (2007).
  • 70
    Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S and Margiolaki I, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:20402042 (2005).
  • 71
    Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O'Keeffe M and Yaghi OM, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:5867 (2010).
  • 72
    Colombo V, Galli S, Choi HJ, Han GD, Maspero A, Palmisano G et al., High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites. Chem Sci 2:13111319 (2011).
  • 73
    Dincaǎ M, Dailly A and Long JR, Structure and charge control in metal-organic frameworks based on the tetrahedral ligand tetrakis(4-tetrazolylphenyl)methane. Chem Eur J 14:1028010285 (2008).
  • 74
    Dincaǎ M, Yu AF and Long JR, Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. J Am Chem Soc 128:89048913 (2006).
  • 75
    Abid HR, Pham GH, Ang HM, Tade MO and Wang S, Adsorption of CH4 and CO2 on Zr-metal organic frameworks. J Colloid Interf Sci 366:120124 (2012).
  • 76
    Zhang J, Sun L, Xu F, Li F, Zhou HY, Liu YL et al., H2 storage and CO2 capture on a nanoscale metal organic framework with high thermal stability. Chem Commun 48:759761 (2012).
  • 77
    Zhou XP, Li M, Liu J and Li D, Gyroidal metal-organic frameworks. J Am Chem Soc 134:6770 (2012).
  • 78
    Yuan DQ, Zhao D, Sun DF and Zhou HC, An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Edit 49:53575361 (2010).
  • 79
    Lu W, Yuan D, Makal TA Li JR and Zhou HC, A highly porous and robust (3,3,4)-connected metal-organic framework assembled with a 90 degrees bridging-angle embedded octacarboxylate ligand. Angew Chem Int Ed 51:15801584 (2012).
  • 80
    Sun MS, Shah DB, Xu HH and Talu O, Adsorption Equilibria of C1 to C4 Alkanes, CO2, and SF6 on Silicalite. J Phys Chem B 102:14661473 (1998).
  • 81
    Jia J, Sun F, Fang Q, Liang X, Cai K, Bian Z et al., A novel low density metal-organic framework with pcu topology by dendritic ligand. Chem Commun 47:91679169 (2011).
  • 82
    Jia J, Sun F, Borjigin T, Ren H, Zhang T, Bian Z et al., Highly porous and robust ionic MOFs with nia topology constructed by connecting an octahedral ligand and a trigonal prismatic metal cluster. Chem Commun 48:60106012 (2012).
  • 83
    Pachfule P, Balan BK, Kurungot S and Banerjee R, One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption. Chem Commun 48:20092011 (2012).
  • 84
    Ni Z and Masel RI, Rapid production of metal—organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc 128:1239412395 (2006).
  • 85
    Klinowski J, Almeida Paz FA, Silva P and Rocha J, Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 40:321330 (2011).
  • 86
    Lin ZJ, Yang Z, Liu TF, Huang YB and Cao R, Microwave-assisted synthesis of a series of lanthanide metal-organic frameworks and gas sorption properties. Inorg Chem 51:18131820 (2012).
  • 87
    Park J, Yuan D, Pham KT, Li JR, Yakovenko A and Zhou HC, Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J Am Chem Soc 134:99102 (2012).
  • 88
    Yuan D, Getman RB, Wei Z, Snurr RQ and Zhou HC, Stepwise adsorption in a mesoporous metal-organic framework: experimental and computational analysis. Chem Commun 48:32973299 (2012).
  • 89
    Huang BL, Ni Z, Millward A, McGaughey AJH, Uher C, Kaviany M and Yaghi O, Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. Int J Heat Mass Tran 50:405411 (2007).