Glutamate and the biology of gliomas


  • John de Groot,

    1. Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
    Search for more papers by this author
  • Harald Sontheimer

    Corresponding author
    1. Department of Neurobiology and Center for Glial Biology in Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
    • Professor of Neurobiology, Director of the Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Ave. S. CIRC 410, Birmingham, AL 35294, USA
    Search for more papers by this author


Several important and previously unrecognized roles for the neurotransmitter glutamate in the biology of primary brain tumors have recently been elucidated. Glutamate is produced and released from glioma cells via the system xc cystine glutamate transporter as a byproduct of glutathione synthesis. Glutamate appears to play a central role in the malignant phenotype of glioma via multiple mechanisms. By binding to peritumoral neuronal glutamate receptors, glutamate is responsible for seizure induction and similarly causes excitotoxicity, which aids the expansion of tumor cells into the space vacated by destroyed tissue. Glutamate also activates ionotropic and metabotropic glutamate receptors on glioma cells in a paracrine and autocrine manner. α-Amino-3-hydroxy-5-methyl-4-isoaxazolepropionate acid (AMPA) glutamate receptors lack the GluR2 subunit rendering them Ca2+ permeable and capable of activating the AKT and MAPK pathways. Furthermore, these receptors are critical in aiding the invasion of glioma cells into normal brain. AMPA-Rs accumulate at focal adhesion sites where they may indirectly mediate interactions between the extracellular matrix and integrins. Glutamate receptor stimulation results in activation of focal adhesion kinase, which is critical to the regulation of growth factor and integrin-stimulated cell motility and invasion. The multitude of effects of glutamate on glioma biology supports the rationale for pharmacological targeting of glutamate receptors and transporters. Several ongoing and recently completed clinical trials are exploring the therapeutic potential of interrupting glutamate-mediated brain tumor growth. © 2010 Wiley-Liss, Inc.