SEARCH

SEARCH BY CITATION

Keywords:

  • astrocytes;
  • glia;
  • K+ buffering;
  • seizures;
  • epilepsy

Abstract

Mutations in the human Kir4.1 potassium channel gene (KCNJ10) are associated with epilepsy. Using a mouse model with glia-specific deletion of Kcnj10, we have explored the mechanistic underpinning of the epilepsy phenotype. The gene deletion was shown to delay K+ clearance after synaptic activation in stratum radiatum of hippocampal slices. The activity-dependent changes in extracellular space volume did not differ between Kcnj10 mutant and wild-type mice, indicating that the Kcnj10 gene product Kir4.1 mediates osmotically neutral K+ clearance. Combined, our K+ and extracellular volume recordings indicate that compromised K+ spatial buffering in brain underlies the epilepsy phenotype associated with human KCNJ10 mutations. © 2011 Wiley-Liss, Inc.