Geophysical Research Letters

Mid-21st century chemical forcing of climate by the civil aviation sector

Authors


Corresponding author: N. Unger, School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA. (nadine.unger@yale.edu)

Abstract

[1] Strong growth in the civil aviation sector will accelerate in the future. Here, we confront the future net chemical (ozone, methane, sulfate, nitrate, black carbon, and water vapor) global climate impact of aviation at 2050 for three novel plausible scenarios constructed at the Volpe National Transportation Center using the U.S. Federal Aviation Administration (FAA) Aviation Environmental Design Tool (AEDT). The aviation net chemical climate impact is cooling in all cases and increases from −10 ± 4 mW m−2 in the contemporary climate up to –69 ± 21 mW m−2 by 2050. Future improvements in fuel efficiency provide the opportunity to reduce aviation's net chemical climate impact by ~50% relative to a baseline scenario of unconstrained growth. On the 20 year time horizon, the cooling net aviation chemical climate impact masks the aviation CO2 global warming by up to 50–100% in the contemporary and future atmospheres.

Ancillary