• Lake shrinkage;
  • Lake expansion;
  • Permafrost;
  • Taliks


[1] Linkages between permafrost distribution and lake surface-area changes in cold regions have not been previously examined over a large scale because of the paucity of subsurface permafrost information. Here, a first large-scale examination of these linkages is made over a 5150 km2 area of Yukon Flats, Alaska, USA, by evaluating the relationship between lake surface-area changes during 1979–2009, derived from Landsat satellite data, and sublacustrine groundwater flow-path connectivity inferred from a pioneering, airborne geophysical survey of permafrost. The results suggest that the shallow (few tens of meters) thaw state of permafrost has more influence than deeper permafrost conditions on the evolving water budgets of lakes on a multidecadal time scale. In the region studied, these key shallow aquifers have high hydraulic conductivity and great spatial variability in thaw state, making groundwater flow and associated lake level evolution particularly sensitive to climate change owing to the close proximity of these aquifers to the atmosphere.