Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss

Authors


Corresponding author: Brent G.T. Else, University of Manitoba, Winnipeg, Manitoba, Canada. (b_else@umanitoba.ca)

Abstract

[1] Using data collected in 2009, we evaluated the potential for the southeastern Canada Basin (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high pCO2sw (~290–320 µatm), considering that surface water temperatures were low and the influence of ice melt was strong. A simple model simulating melt of the remaining ice and exposure of the surface water for 100 days revealed a weak capacity for atmospheric CO2 uptake (mean flux: −2.4 mmol m−2 d−1), due largely to warming of the shallow mixed layer. Our results confirm a previous finding that the Canada Basin is not a significant sink of atmospheric CO2 under summertime ice-free conditions and that increased ventilation of the surface mixed layer due to sea ice loss is weakening the sink even further.

Ancillary