Numerical simulations on megathrust rupture stabilized under strong dilatancy strengthening in slow slip region


  • Yajing Liu

    Corresponding author
    1. Department of Earth and Planetary Sciences, McGill University, Montréal, Québec, Canada
    2. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
    • Corresponding author: Y. Liu, Department of Earth and Planetary Sciences, McGill University, 3450 University, 339 FD Adams, Montreal, Quebec, Canada. (

    Search for more papers by this author


[1] Episodic slow slip events (SSEs) typically involve a few millimeters to centimeters of slip over several days to months at depths near or further downdip of megathrust seismogenic zones. Despite its widespread presence in subduction margins, it remains unknown how SSEs interact with the seismogenic zone and affect megathrust ruptures. Here, I construct a 2-D thrust fault model governed by rate-state friction to investigate how fault dilatancy influences the amplitude and spatial distribution of‘ coseismic slip, afterslip, and SSEs. Model results illustrate that, under strong dilatancy and high pore pressure around the friction stability transition, coseismic rupture stops at the onset of SSEs. Modeled SSEs have lower velocities, longer recurrence intervals and durations, and larger slip amounts as dilatancy becomes stronger, demonstrating a transition from short-term to long-term type of SSE behavior. These results qualitatively explain the range of spatial distributions of SSEs and megathrust ruptures observed or inferred in natural subduction zones. Furthermore, the relative depths of SSEs and megathrust afterslip may serve as an indicator of dilatancy effectiveness.