SEARCH

SEARCH BY CITATION

References

  • Bowman, D. M. J. S., et al. (2009), Fire in the Earth system, Science, 324(5926), 481484.
  • Bradstock, R. A., and T. D. Auld (1995), Soil temperatures during experimental bushfires in relation to fire intensity: Consequences for legume germination and fire management in south-eastern Australia, J. Appl. Ecol., 32(1), 7684.
  • Carvalho, A., M. Flannigan, K. Logan, L. Gowman, A. Miranda, and C. Borrego (2010), The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change, Clim. Change, 98(1), 177197.
  • Cerdà, A., and S. H. Doerr (2005), Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation, Int. J. Wildland Fire, 14(4), 423437.
  • Cerdà, A., and P. Robichaud (2009), Fire Effects on Soils and Restoration Strategies, Science Publishers, Enfield, N. H.
  • Cerdà, A., A. C. Imeson, and A. Calvo (1995), Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, Southern Spain, Catena, 24, 289304.
  • Certini, G. (2005), Effects of fire on properties of forest soils: A review, Oecologia, 143(1), 110.
  • DeBano, L. F. (1981), Water repellent soils: A state-of-the-art, Gen. Tech. Rep. PSW-46, 21 pp., USFS, Berkeley, Calif.
  • Fernandes, P. M., W. R. Catchpole, and F. C. Rego (2000), Shrubland fire behaviour modelling with microplot data, Can. J. For. Res., 30, 889899.
  • Fernandes, P. M., A. Luz, and C. Loureiro (2010), Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal, For. Ecol. Manage., 260(5), 883892.
  • Finney, M. A. (2004), FARSITE: Fire Area Simulator—Model Development and Evaluation, USFS, Rocky Mountain Research Station, Ogden, Utah.
  • García-Corona, R., E. Benito, E. De Blas, and M. E. Varela (2004), Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils, Int. J. Wildland Fire, 13, 195199.
  • Giglio, L., J. T. Randerson, G. R. van der Werf, P. S. Kasibhatla, G. J. Collatz, D. C. Morton, and R. S. DeFries (2010), Assessing variability and long-term trends in burned area by merging multiple satellite fire products, Biogeosciences, 7, 11711186.
  • Granged, A. J. P., A. Jordán, L. M. Zavala, M. Muñoz-Rojas, and J. Mataix-Solera (2011), Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia), Geoderma, 167–168, 125134.
  • Granström, A., and J. Schimmel (1993), Heat effects on seeds and rhizomes of a selection of boreal forest plants and potential reaction to fire, Oecologia, 94(3), 307313.
  • Grasso, G., G. Ripabelli, M. Sammarco, and S. Mazzoleni (1996), Effects of heating on the microbial populations of a grassland soil, Int. J. Wildland Fire, 6(2), 6770.
  • Hartford, R. A., and W. H. Frandsen (1992), When it's hot, it's hot… or maybe it's not! (surface flaming may not portend extensive soil heating), Int. J. Wildland Fire, 2, 139144.
  • Hille, M. G., and J. den Ouden (2005), Fuel load, humus consumption and humus moisture dynamics in Central European Scots pine stands, Int. J. Wildland Fire, 14(2), 153159.
  • Holz, A., and T. T. Veblen (2011), Variability in the Southern Annular Mode determines wildfire activity in Patagonia, Geophys. Res. Lett., 38(14), L14710.
  • Keeley, J. E. (2009), Fire intensity, fire severity and burn severity: A brief review and suggested usage, Int. J. Wildland Fire, 18(1), 116126.
  • Keeley, J. E., and T. W. McGinnis (2007), Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest, Int. J. Wildland Fire, 16(1), 96106.
  • Kerby, J., S. Fuhlendorf, and D. Engle (2007), Landscape heterogeneity and fire behavior: Scale-dependent feedback between fire and grazing processes, Landscape Ecol., 22(4), 507516.
  • Köppen, W. (1923), Die Klimate der Erde - Grundriss der Klimakunde, Walter de Gruyter & Co., Berlin, Leipzig, Germany.
  • Lanini, J. S., E. A. Clark, and D. P. Lettenmaier (2009), Effects of fire-precipitation timing and regime on post-fire sediment delivery in Pacific Northwest forests, Geophys. Res. Lett., 36(1), L01402.
  • Martin, D. A., and J. A. Moody (2001), Comparison of soil infiltration rates in burned and unburned mountainous watersheds, Hydrol. Processes, 15(15), 28932903.
  • Miranda, A. C., H. S. Miranda, I.d. F. O. Dias, and B. F.d. S. Dias (1993), Soil and air temperatures during prescribed cerrado fires in central Brazil, J. Trop. Ecol., 9(3), 313320.
  • Molina, M. J., and J. V. Llinares (2001), Temperature-time curves at the soil surface in maquis summer fires, Int. J. Wildland Fire, 10(1), 4552.
  • Moreno, J. M., and W. C. Oechel (1991), Fire intensity effects on germination of shrubs and herbs in southern California chaparral, Ecology, 72(6), 19932004.
  • Morgan, J. W. (1999), Defining grassland fire events and the response of perennial plants to annual fire in temperate grasslands of south-eastern Australia, Plant Ecol., 144(1), 127144.
  • Pausas, J. G., J. Llovet, A. Rodrigo, and R. Vallejo (2008), Are wildfires a disaster in the Mediterranean basin?—A review, Int. J. Wildland Fire, 17(6), 713723.
  • Robichaud, P. R., L. E. Ashmun, and B. D. Sims (2010), Post-Fire Treatment Effectiveness for Hillslope Stabilization, USFS, Rocky Mountain Research Station, Logan, Utah.
  • Rulli, M. C., and R. Rosso (2005), Modeling catchment erosion after wildfires in the San Gabriel Mountains of southern California, Geophys. Res. Lett., 32(19), L19401.
  • Shakesby, R. A. (2011), Post-wildfire soil erosion in the Mediterranean: Review and future research directions, Earth-Sci. Rev., 105(3–4), 71100.
  • Steffens, M., A. Kölbl, M. Giese, C. Hoffmann, K. U. Totsche, L. Breuer, and I. Kögel-Knabner (2009), Spatial variability of topsoils and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR China), J. Plant Nutr. Soil Sci., 172(1), 7890.
  • Stoof, C. R., J. G. Wesseling, and C. J. Ritsema (2010), Effects of fire and ash on soil water retention, Geoderma, 159(3–4), 276285.
  • Stoof, C. R., R. W. Vervoort, J. Iwema, E. van den Elsen, A. J. D. Ferreira, and C. J. Ritsema (2012), Hydrological response of a small catchment burned by experimental fire, Hydrol. Earth Syst. Sci., 16, 267285.
  • Valette, J. C., V. Gomendy, J. Marechal, C. Houssard, and D. Gillon (1994), Heat-transfer in the soil during very low-intensity experimental fires—The role of duff and soil-moisture content, Int. J. Wildland Fire, 4,225237.
  • Vega, J. A., P. Cuiñas, T. Fontúrbel, P. Pérez-Gorostiaga, and C. Fernández (1998), Predicting fire behaviour in Galician (NW Spain) shrubland fuel complexes, in Proc. 3rd ICFFR, 14th Fire and Forest Meteorology Conf., edited by D. X. Viegas, pp. 713728, ADAI, University of Coimbra, Luso, Portugal.
  • Veraart, A. J., E. J. Faassen, V. Dakos, E. H. van Nes, M. Lurling, and M. Scheffer (2012), Recovery rates reflect distance to a tipping point in a living system, Nature, 481(7381), 357359.
  • Wright, B. R., and P. J. Clarke (2008), Relationships between soil temperatures and properties of fire in feathertop spinifex (Triodia schinzii (Henrard) Lazarides) sandridge desert in central Australia, Rangel. J., 30(3), 317325.
  • Zehe, E., and M. Sivapalan (2009), Threshold behaviour in hydrological systems as (human) geo-ecosystems: Manifestations, controls, implications, Hydrol. Earth Syst. Sci., 13, 12731297.