SEARCH

SEARCH BY CITATION

References

  • Bandstra, L., B. Hales, and T. Takahashi (2006), High-frequency measurements of total CO2: Method development and first oceanographic observations, Mar. Chem., 100(1–2), 2438.
  • Barton, A., B. Hales, G. G. Waldbusser, C. Langdon, and R. A. Feely (2012), The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects, Limnol. Oceanogr., 57(3), 698710.
  • Bochenek, E. A., J. M. Klinck, E. N. Powell, and E. E. Hofmann (2001), A biochemically based model of the growth and development of Crassostrea gigas larvae, J. Shellfish Res., 20(1), 243265.
  • Cohen, A., and T. A. McConnaughey (2003), in Reviews in mineralogy and geochemistry Vol. 54: Biomineralization, P. M. Dove, J. J. DeYoreo, S. Weiner, Eds., pp. 151187, Mineralogical Society of America, Washington, DC.
  • Cohen, A. L., and M. Holcomb (2009), Why corals care about ocean acidification: uncovering the mechanism, Oceanography, 22(4), 118127.
  • Crenshaw, M. A. (1972), Inorganic composition of molluscan extrapallial fluid, Biol. Bull., 143(3), 506512.
  • Elhadj, S., J. J. De Yoreo, J. R. Hoyer, and P. M. Dove (2006), Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth, Proc. Natl. Acad. Sci. U.S.A., 103(51), 1923719242.
  • Feely, R. A., C. L. Sabine, J. M. Hernandez-Ayon, D. Ianson, and B. Hales (2008), Evidence for upwelling of corrosive “acidified” water onto the continental shelf, Science, 320(5882), 14901492.
  • Gallager, S. M., and R. Mann (1986), Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to broodstock conditioning and lipid content of eggs, Aquaculture, 56(2), 105121.
  • Gillikin, D. P., A. Lorrain, L. Meng, and F. Dehairs (2007), A large metabolic carbon contribution to the delta C-13 record in marine aragonitic bivalve shells, Geochim. Cosmochim. Acta, 71(12), 29362946.
  • Green, M. A., G. G. Waldbusser, S. L. Reilly, K. Emerson, and S. O'Donnell (2009), Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves, Limnol. Oceanogr., 54(4), 10371047.
  • Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T. L. Fralicher, and G.-K. Plattner (2012), Rapid progression of ocean acidification in the California Current System, Science, 337(6091), 220223.
  • Hauri, C., N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G. K. Plattner (2012), Spatiotemporal variability and long-term trends of ocean acidification in the California Current System, Biogeosciences Discuss., 9, 1037110428, doi:10.5194/bgd-9-10371-2012.
  • Hettinger, A., E. Sanford, T. M. Hill, A. D. Russell, K. N. S. Sato, J. Hoey, M. Forsch, H. Page, and B. Gaylord (2012), Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster, Ecology, 93, 27582768, doi:10.1890/12-0567.1.
  • Hickey, B. M., and N. S. Banas (2003), Oceanography of the US Pacific Northwest Coastal Ocean and estuaries with application to coastal ecology, Estuaries, 26(4B), 10101031.
  • Hinga, K. R. (2002), Effects of pH on coastal marine phytoplankton, Mar. Ecol. Prog. Ser., 238, 281300.
  • His, E., and D. Maurer (1988), Shell growth and gross biochemical-composition of oyster larvae (Crassostrea gigas) in the field, Aquaculture, 69(1–2), 185194.
  • Hofmann, G. E., et al. (2011), High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS One, 6(12), e28983.
  • Kelly, R. P., M. M. Foley, W. S. Fisher, R. A. Feely, B. S. Halpern, G. G. Waldbusser, and M. R. Caldwell (2011), Mitigating local causes of ocean acidification with existing laws, Science, 332(6033), 10361037.
  • Kniprath, E. (1981), Ontogeny of the molluscan shell field—A review, Zool. Scr., 10(1), 6179.
  • Kurihara, H., S. Kato, and A. Ishimatsu (2007), Effects of increased seawater pCO(2) on early development of the oyster Crassostrea gigas, Aquat. Biol., 1(1), 9198.
  • Lartaud, F., L. Emmanuel, M. de Rafelis, S. Pouvreau, and M. Renard (2010), Influence of food supply on the delta C-13 signature of mollusc shells: implications for palaeoenvironmental reconstitutions, Geo-Mar. Lett., 30(1), 2334.
  • Lorrain, A., Y. M. Paulet, L. Chauvaud, R. Dunbar, D. Mucciarone, and M. Fontugne (2004), δ13C variation in scallop shells: Increasing metabolic carbon contribution with body size?, Geochim. Cosmochim. Acta, 68(17), 35093519.
  • McConnaughey, T. A., and D. P. Gillikin (2008), Carbon isotopes in mollusk shell carbonates, Geo-Mar. Lett., 28(5–6), 287299.
  • McConnaughey, T. A., J. Burdett, J. F. Whelan, and C. K. Paull (1997), Carbon isotopes in biological carbonates: Respiration and photosynthesis, Geochim. Cosmochim. Acta, 61(3), 611622.
  • McCutchan, J. H., W. M. Lewis, C. Kendall, and C. C. McGrath (2003), Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, 102(2), 378390.
  • Melzner, F., P. Stange, K. Trubenbach, J. Thomsen, I. Casties, U. Panknin, S. N. Gorb, and M. A. Gutowska (2011), Food supply and seawater pCO(2) impact calcification and internal shell dissolution in the blue mussel Mytilus edulis, PLoS One, 6(9), e24223.
  • Miller, A. W., A. C. Reynolds, C. Sorbino, and G. F. Riedel (2009), Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries, PLoS Biol., 4(5), e5661.
  • Moran, A. L., and D. T. Manahan (2004), Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas, J. Exp. Mar. Biol. Ecol., 306(1), 1736.
  • Morse, J. W., R. S. Arvidson, and A. Luttge (2007), Calcium carbonate formation and dissolution, Chem. Rev., 107(2), 342381.
  • Nair, P. S., and W. E. Robinson (1998), Calcium speciation and exchange between blood and extrapallial fluid of the quahog Mercenaria mercenaria (L.), Biol. Bull., 195(1), 4351.
  • Palmer, A. R. (1992), Calcification in marine mollusks—How costly is it, Proc. Natl. Acad. Sci. U. S. A., 89(4), 13791382.
  • Parker, L. M., P. M. Ross, W. A. O'Connor, L. Borysko, D. A. Raftos, and H. O. Portner (2012), Adult exposure influences offspring response to ocean acidification in oysters, Glob. Change Biol., 18(1), 8292.
  • Ries, J. B. (2011), A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification, Geochim. Cosmochim. Acta, 75(14), 40534064.
  • Romanek, C. S., E. L. Grossman, and J. W. Morse (1992), Carbon isotope fractionaction in synthetic aragonite and calcite: effects of temperature and precipitation rate, Geochim. Cosmochim. Acta, 56(1), 419430.
  • Sanchez-Lazo, C., and I. Martinez-Pita (2012), Biochemical and energy dynamics during larval development of the mussel Mytilus galloprovincialis (Lamarck, 1819), Aquaculture, 358–359, 7178.
  • Shumway, S. E. (1977), Effect of salinity fluctuation on the osmotic pressure and Na2+, Ca2+, and Mg2+ ion concentrations in the hemolymph of bivalve molluscs, Mar. Biol., 41(2), 153177.
  • Talmage, S. C., and C. J. Gobler (2010), Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish, Proc. Natl. Acad. Sci. U. S. A., 107(40), 1724617251.
  • Talmage, S.C., and J. Gobler (2011), Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juvenilles of three species of northwest Atlantic bivalves. PLoS One 6(10), e26941, doi:10.1371/journal.pone.0026941.
  • Thomsen, J., et al. (2010), Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification, Biogeosciences, 7(11), 38793891.
  • Waldbusser, G. G., H. Bergschneider, and M. A. Green (2010), Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp, Marine Ecological Progress Series, 417, 171182.
  • Waldbusser, G. G., E. P. Voigt, H. Bergschneider, M. A. Green, and R. I. E. Newell (2011), Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH, Estuaries Coasts, 34(2), 221231.
  • Weiss, I. M., N. Tuross, L. Addadi, and S. Weiner (2002), Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite, J. Exp. Zool., 293(5), 478491.
  • Zuddas, P., and A. Mucci (1998), Kinetics of calcite precipitation from seawater: II. The influence of the ionic strength, Geochim. Cosmochim. Acta, 62(5), 757766.