Diapiric ascent of silicic magma beneath the Bolivian Altiplano



[1] The vertical transport of large volumes of silicic magma, which drives volcanic eruptions and the long-term compositional evolution of the continental crust, is a highly debated problem. In recent years, dyking has been favored as the main ascent mechanism, but the structural connection between a distributed configuration of melt-filled pores in the source region and shallow magma reservoirs remains unsolved. In the Central Andes, inversion of a new high-resolution Bouguer anomaly data over the Altiplano-Puna Magma Body (APMB) reveals ~15 km wide, vertically elongated, low-density, 3D structures rooted at the top of the APMB at 20 km depth. We integrate our gravity inversion with the available geophysical, geological, and petrological observations, and in agreement with petrological/mechanical considerations propose that, in this region of the Andes, partially molten granitic bodies ascend diapirically through the hot ductile mid-upper crust.