Get access
Geophysical Research Letters

Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use

Authors

  • Amos P. K. Tai,

    Corresponding author
    1. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
    • Corresponding author: A. P. K. Tai, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02139, USA. (amostai@mit.edu)

    Search for more papers by this author
  • Loretta J. Mickley,

    1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
    Search for more papers by this author
  • Colette L. Heald,

    1. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
    Search for more papers by this author
  • Shiliang Wu

    1. Department of Geological and Mining Engineering and Sciences and Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, Michigan, USA
    Search for more papers by this author

Abstract

[1] The inhibition of biogenic isoprene emission by elevated CO2 as observed in many plant taxa may significantly alter the sensitivity of air quality to global changes. We use a one-way coupled modeling framework to perform simulations under various combinations of 2000 to 2050 changes in climate, natural vegetation, anthropogenic emissions and land use to examine the effect of the CO2-isoprene interaction on atmospheric composition. We find that consideration of CO2 inhibition substantially reduces the sensitivity of surface ozone and secondary organic aerosol (SOA) to climate and natural vegetation, resulting in much smaller ozone and SOA increases in major populated regions than are projected by previous studies. The impact of land use on air quality is relatively insensitive to CO2 inhibition, rendering land use change the key factor that can offset or enhance the effects of anthropogenic emissions and shape air quality and climate-relevant species in the mid-21st century.

Get access to the full text of this article

Ancillary