SEARCH

SEARCH BY CITATION

Keywords:

  • dimethyl sulfide;
  • net community production;
  • marine biogeochemistry;
  • climate change

[1] Although much attention has been paid to describing the distribution of oceanic dimethyl sulfide (DMS) concentrations, establishing robust relationships between DMS concentrations and biological, physical, and chemical variables is still challenging. Previous studies have proposed semiempirical parameterizations by combining multiple physical and biogeochemical parameters to better understand and reproduce the global distribution of sea surface DMS. However, none of these parameterization schemes could reconcile regionally elevated DMS peaks found in high-resolution DMS measurements made in the western subarctic Pacific. Here we found that DMS concentrations are highly correlated with the net community production, a parameter that integrates biological activity over time. We anticipate that this relationship may be exportable to other regions with high primary productivity, such as the Southern Ocean or upwelling regions, and can be used as an important parameterization scheme, combined with solar radiation dose relationship.