• scintillation;
  • forecast;
  • plasma irregularities

[1] We present the first calculation of phase and coherence of cross-wavelet transform applied to longitudinally separated L-band equatorial ionospheric scintillation observations received from Geostationary Earth Orbit (GEO) satellites. The phase and coherence analysis were employed on two pairs of observations: (1) São Luís and Rio Branco and (2) Alta Floresta and Huancayo. For these case studies, in statistically significant and high-coherence regions, scintillation observations over São Luís (Alta Floresta) lead that of Rio Branco (Huancayo) by ∼2 to 3 h with a 95%frequency. If L-band scintillation happens over São Luís (Alta Floresta), there is a 95%likelihood that scintillation would happen to the west over Rio Branco (Huancayo) after ∼2 to 3 h, suggesting that a forecast can be made ahead of scintillation occurrences. The phase and coherence relationships between the longitudinally separated scintillation-producing regions can be connected to the large-scale wave structures which are reported to be related to the generation of equatorial spread F and scintillation.