SEARCH

SEARCH BY CITATION

References

  • Anderson, T. L. (1995), Fracture Mechanics: Fundamentals and Applications, 2nd ed., CRC Press, Boca Raton, Fla.
  • Brown, E. T., and E. Hoek (1978), Trends in relationships between measured in-situ stresses and depth, Int. J. Rock Mech. Min. Sci., 15(4), 211215.
  • Dinske, C., and S. Shapiro (2013), Seismotectonic state of reservoirs inferred from magnitude distributions of fluid-induced seismicity, J. Seismolog., 17(1), 1325.
  • Economides, M. J., and K. G. Nolte (2000), Reservoir Stimulation, 3rd ed., John Wiley, Chichester, U. K.
  • Engelder, T. (1993), Stress Regimes in the Lithosphere, Princeton Univ. Press, Princeton, N. J.
  • Engelder, T. (2012), Capillary tension and imbibition sequester frack fluid in Marcellus gas shale, PNAS USA, 105(52), E3625.
  • Eshelby, J. D. (1957), The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A Math. Phys. Sci., 241(1226), 376396.
  • Fischer, T., and A. Guest (2011), Shear and tensile earthquakes caused by fluid injection, Geophys. Res. Lett., 38, L05307, doi:10.1029/2010GL045447.
  • Fisher, K., and N. Warpinski (2011), Hydraulic fracture-height growth: Real data, SPE Annual Technical Conference and Exhibition, SPE 145949.
  • Fisher, M. K., C. A. Wright, B. M. Davidson, A. K. Goodwin, E. O. Fielder, W. S. Buckler, and N. P. Steinsberger (2002), Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale, SPE Annual Technical Conference and Exhibition, SPE 77441.
  • Kanamori, H., and D. L. Anderson (1975), Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 65(5), 10731095.
  • Kreitler, C. W. (1989), Hydrogeology of sedimentary basins, J. Hydrol., 106(1–2), 2953.
  • Montgomery, C. T., and M. B. Smith (2010), Hydraulic fracturing: History of an enduring technology, J. Petrol. Tech., 62(12), 2632.
  • Myers, T. (2012), Potential contaminant pathways from hydraulically fractured shale to aquifers, Ground Water, 50(6), 872882.
  • Nadan, B. J., and T. Engelder (2009), Microcracks in New England granitoids: A record of thermoelastic relaxation during exhumation of intracontinental crust, Geol. Soc. Am. Bull., 121(1–2), 8099.
  • Nordgren, R. P. (1972), Propagation of a vertical hydraulic fracture, Soc. Pet. Eng. J., 12(4), 306314.
  • Pollard, D. D. (1976), On the form and stability of open hydraulic fractures in the Earth's crust, Geophys. Res. Lett., 3(9), 513516.
  • Pollard, D. D., and P. Segall (1987), Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, veins, dikes, and solution surfaces, in Fracture Mechanics of Rock, edited by B. K. Atkinson, pp. 277350, Academic Press, London.
  • Pollard, D. D., and A. Aydin (1988), Progress in understanding jointing over the past century, Geol. Soc. Am. Bull., 100(8), 11811204.
  • Rozell, D. J., and S. J. Reaven (2012), Water pollution risk associated with natural gas extraction from the Marcellus Shale, Risk Anal., 32(8), 13821393.
  • Rutqvist, J., A. P. Rinaldi, F. Cappa, and G. J. Moridis (2013), Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs, J. Pet. Sci. Eng., doi:10.1016/j.petrol.2013.04.023.
  • Ryder, R. T., M. H. Trippi, C. S. Swezey, R. D. Crangle, R. S. Hope, E. L. Rowan, and E. E. Lentz (2012), Geologic cross-section C-C′ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge Province, Bedford County, south-central Pennsylvania, U. S. Geol. Surv. Scientific Investigations Map 3172.
  • Sandberg, C. A. (1962), Geology of the Williston Basin, North Dakota, Montana, and South Dakota, with reference to subsurface disposal of radioactive wastes, U. S. Geol. Surv. TEI-809, 151 pp.
  • Schultz, R. A., and H. Fossen (2002), Displacement–length scaling in three dimensions: The importance of aspect ratio and application to deformation bands, J. Struct. Geol., 24(9), 13891411.
  • Shapiro, S. A., O. S. Krüger, C. Dinske, and C. Langenbruch (2011), Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes, Geophysics, 76(6), WC55WC63.
  • Sheorey, P. R. (1994), A theory for in situ stresses in isotropic and transversely isotropic rock, Int. J. Rock Mech. Min. Sci., 31(1), 2334.
  • Stein, S., and M. Wysession (2003), An Introduction to Seismology, Earthquakes and Earth Structure, Blackwell, Malden, Mass.
  • United States Environmental Protection Agency (US EPA) (2012), Study of the potential impacts of hydraulic fracturing on drinking water resources: Progress report, EPA 601/R-12/011, 278 pp.
  • Warner, N. R., R. B. Jackson, T. H. Darrah, S. G. Osborn, A. Down, K. Zhao, A. White, and A. Vengosh (2012), Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania, Proc. Natl. Acad. Sci., 109(30), 11,96111,966.
  • Warpinski, N. R., P. T. Branagan, A. R. Sattler, C. L. Cipolla, J. C. Lorenz, and B. J. Thorne (1990), Case study of a stimulation experiment in a fluvial, tight-sandstone gas reservoir, SPE Prod. Eng., 5(4), 403410.
  • Warpinski, N. R., S. L. Wolhart, and C. A. Wright (2004), Analysis and prediction of microseismicity induced by hydraulic fracturing, Soc. Petrol. Eng. J., 9(1), 2433.
  • Warpinski, N. R., J. Du, and U. Zimmer (2012), Measurements of hydraulic-fracture-induced seismicity in gas shales, SPE Prod. Oper., 27(3), 240252.
  • Zoback, M. L. (1992), First-and second-order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97(B8), 11,703711,728.
  • Zoback, M. D., and S. M. Gorelick (2012), Earthquake triggering and large-scale geologic storage of carbon dioxide, PNAS, 109(26), 10,16410,168.
  • Zoback, M. L., and M. Zoback (1980), State of stress in the conterminous United States, J. Geophys. Res., 85(B11), 61136156.
  • Zoback, M. D., J. Townend, and B. Grollimund (2002), Steady-state failure equilibrium and deformation of intraplate lithosphere, Int. Geol. Rev., 44(5), 383401.