SEARCH

SEARCH BY CITATION

Keywords:

  • denudation;
  • weathering;
  • Mars;
  • alluvial fan;
  • late Amazonian

[1] Inactive fan surfaces become smoother and develop desert pavement over time by weathering and erosion. We use this mechanism to estimate late Amazonian boulder breakdown and surface denudation rates on a young (∼1.25 Ma) (Schon et al., 2009) fan on Mars. This is done by comparing boulder size and surface relief between lobes of different ages. The boulder breakdown rate is 3.5 m/Myr, surface smoothing (denudation) rate is approximated as 0.89 m/Myr. These rates exceed previous estimates for the Amazonian by orders of magnitude. We attribute this to locality, high initial smoothing rates after morphological activity and obliquity and eccentricity-driven variation in the availability of (metastable) liquid water, which acts as a catalyst for weathering during these periods. The results have major implications for process interpretation of Martian landforms, as they imply that typical small-scale morphology may be subdued within <1 Myr.