SEARCH

SEARCH BY CITATION

References

  • Bradbury, K. K., J. P. Evans, J. S. Chester, F. M. Chester, and D. L. Kirschner (2011), Lithology and internal structure of the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole, Earth Planet. Sci. Lett., 310, 131144, doi:10.1016/j.epsl.2011.07.020.
  • Cavailhes, T., et al. (2013), Influence of fault rock foliation on fault zone permeability: The case of deeply buried arkosic sandstones (Grès d'Annot, SE FRANCE): American Association of Petroleum Geologists Bulletin, AAPG Bulletin, 97(7), 15211543, doi:10.1306/03071312127.
  • Chardon, S. E., R. F. Livens, and D. J. Vaughan (2006), Reactions of feldspar surfaces with aqueous solutions, Earth Sci. Rev., 78, 126.
  • Di Toro, G., R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shinamoto (2011), Fault lubrication during earthquakes, Nature, 471, 494499, doi:10.1038/nature09838.
  • Evans, P. E. (1990), Textures, deformation mechanisms, and the role of fluids in the cataclastic deformation of granitic rocks, in Deformation Mechanisms, Rheology and Tectonics, vol. 54, edited by R. J. Knipe and E. H. Rutter, pp. 2939, Geological Society of London, special publications, London, doi:10.1144/GSL.SP.1990.054.01.03.
  • Faulkner, D. R., C. A. L. Jackson, R. J. Lunn, R. W. Schlische, Z. K. Shipton, and C. A. J. Wibberley (2010), A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 15571575, doi:10.1016/j.jsg.2010.06.009.
  • Fisher, Q., and R. J. Knipe (2001), The permeability of faults within siliclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf, Mar. Pet. Geol., 18, 10631081.
  • Fisher, Q., J. M. Casey, S. D. Harris, and R. J. Knipe (2003), Fluid flow properties of faults in sandstone: The importance of temperature history, Geology, 31, 965968.
  • Gapais, D. (1989), Shear structures within deformed granites: Mechanical and thermal indicators, Geology, 17, 11441147.
  • Haines, S. H., and B. A. van der Pluijm (2012), Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA, J. Struct. Geol., 43, 232.
  • Hunziger, J. C. (1986), The evolution of illite to muscovite: An example of the behavior of isotopes in low-grade metamorphic terrains, Chem. Geol., 57, 3140.
  • Janecke, S. U., and P. E. Evans (1988), Feldspar-influenced rock rheologies, Geology, 16, 10641067.
  • Joseph, P., and S. A. Lomas (2004), Deep water sedimentation in the Alpine Foreland Basin of SE France: A new perspective on the Grès d'Annot and related systems, Geological Society, special publication, vol. 211, pp. 116, London, United Kingdom.
  • Kamineni, D. C., R. Kerrich, and A. Brown (1993), Effects of differential reactivity of minerals on the development of brittle to semi-brittle structures in granitic rocks: Textural and oxygen isotope evidence, Chem. Geol., 105, 215232.
  • Kerckhove, C. (1969), La < zone du flysch > dans les nappes de l'Embrunais-Ubaye (Alpes occidentales), Géologie Alpine, 45, 1202.
  • Labaume, P., M. Jolivet, F. Souquière, and A. Chauvet (2008), Tectonic control on diagenesis in a foreland basin: Combined petrologic and thermochronologic approaches in the Grès d'Annot basin (Late Eocene-Early Oligocene, French-Italian external Alps), Terra Nova, 20, 95101, doi:10.1111/j.1365-3121.2008.00793.x.
  • Labaume, P., et al. (2009), Diagenesis controlled by tectonic burial in a foreland basin turbidite formation. The case example of the Grès d'Annot, French-Italian external Alps: Geophysical Research Abstracts, 11, EGU2009-8236-3, EGU General Assembly 2009, Vienna.
  • Leclère, H., M. Buatier, D. Charpentier, J.-P. Sizun, P. Labaume, and T. Cavailhes (2012), Formation of phyllosilicates in fault zone affecting deeply buried arkosic sandstones. Their influence on fault zone petrophysic properties (Annot sandstones, French external Alps), Swiss J. Geosci., doi:10.1007/s00015-012-0099-z.
  • Lockner, D., C. Morrow, D. Moore, and H. Stephen (2011), Low strength of deep San Andreas fault gouge from SAFOD core, Nature, 472, 8286, doi:10.1038/nature09927.
  • Maggi, A., J. A. Jackson, D. McKenzie, and K. Priestley (2000), Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology, 28, 495498.
  • Mitra, G. (1978), Ductile deformation zones and mylonites: The mechanical processes involved in the deformation of crystalline basement rocks, Am. J. Sci., 278, 10571084.
  • Moore, D. E., and J. D. Byerlee (1989), Textural development of clayey and quartzofeldspathic fault gouges relative to their sliding behavior, Phys. Chem. Earth, 17, 19.
  • Mullis, J., K. M. Rahn, P. Schwer, C. Capitani, W. B. Stern, and M. Frey (2002), Correlation of fluid inclusion temperatures with illite “crystallinity” data and clay mineral chemistry in sedimentary rocks from the external part of the Central Alps, Schweiz. Mineral. Petrogr. Mitt., 82, 325340.
  • Passchier, C. W., and R. A. J. Trouw (2005), Microtectonics, Springer, Berlin, pp. 1366.
  • Ramsay, J. G. (1967), Folding and Fracturing of Rocks, McGraw-Hill Book Company, New York, pp. 1560.
  • Scholz, H. C. (1990), The Mechanics of Earthquakes and Faulting, Cambridge University Press, New York, pp. 439.
  • Strovoll, V., K. Bjorlykke, D. Karlsen, and G. Saigal (2002), Porosity preservation in reservoir sandstones due to grain-coating illite: A study of the Jurassic Garn Formation from the Kristin and Lavrans fields, offshore Mid-Norway, Mar. Pet. Geol., 19, 767781.
  • Wibberley, C. A. J. (1999), Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones?, J. Struct. Geol., 21, 12191227.
  • Wibberley, C. A. J., and A. McCaig (1999), Quantifying orthoclase and albite muscovitisation sequences in fault zones, Chem. Geol., 165, 181196.
  • Wibberley, C. A. J., and T. Shinamoto (2005), Earthquake slip weakening and asperities explained by thermal pressurization, Nature, 436, 689692, doi:10.1038/nature03901.
  • Yielding, G. (2002), Shale Gouge Ratio—Calibration by Geohistory, in A.G. Koeslter and R. Hunsdale, eds, hydrocarbon seal quantification: Norwegian Petroleum Society Special Publication, 11, pp. 115.