SEARCH

SEARCH BY CITATION

References

  • Archer, C. L., et al. (2013), Meteorology for coastal/offshore wind energy in the United States: recommendations and research needs for the next 10 years, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-13-00108.1.
  • Bergstrom, H. (2009), Meteorological conditions at Lillgrund, Swedish Energy Agency, 1–26.
  • Calaf, M., C. Meneveau, and J. Meyers (2010), Large eddy simulation study of fully developed wind-turbine array boundary layers, Phys. Fluids, 22(1), 015110, doi:10.1063/1.3291077.
  • Calaf, M., M. B. Parlange, and C. Meneveau (2011), Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers, Phys. Fluids, 23(12), 126603, doi:10.1063/1.3663376.
  • Churchfield, M. J., G. Vijayakumar, J. G. Brasseur, and P. J. Moriarty (2010), Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM, Keystone, Colo.
  • Churchfield, M. J., S. Lee, J. Michalakes, and P. J. Moriarty (2012a), A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics, J. Turbul., 13(14), 132.
  • Churchfield, M. J., S. Lee, P. J. Moriarty, L. A. Martinez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur (2012b), Large-Eddy Simulations of Wind-Plant Aerodynamics, pp. 119, Nashville, Tenn.
  • Dahlberg, J. A. (2009), Assessment of the Lillgrund windfarm, Swedish Energy Agency.
  • Hughes, C. (2011), The climatology of the Delaware Bay/sea breeze, 1–129 pp., University of Delaware, Newark (DE). [online] Available from: http://udspace.udel.edu/bitstream/handle/19716/10659/Christopher_Hughes_thesis.pdf
  • Lu, H., and F. Porté-Agel (2011), Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer, Phys. Fluids, 23(6), 065101, doi:10.1063/1.3589857.
  • Meneveau, C. (2012), Large eddy simulations of large wind-turbine arrays in the atmospheric boundary layer, J. Turbul., 13(7), 112, doi:10.1080/14685248.2011.663092.
  • Meyers, J., and C. Meneveau (2011), Optimal turbine spacing in fully developed wind farm boundary layers, Wind Energy, 15(2), 305317, doi:10.1002/we.469.
  • Moeng, C. H. (1984), A large-eddy-simulation model for the study of planetary boundary-layer turbulence, J. Atmos. Sci., 41, 20522062.
  • OpenFOAM (2011), The open source CFD toolbox, User Guide, 2nd ed., OpenFOAM Foundation. [online] Available from: http://www.openfoam.org/docs/user
  • Pope, S. B. (2000), Turbulent Flows, Cambridge Univ. Press, Cambridge, UK.
  • Rhie, C. M., and W. L. Chow (1983), Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 15251532.
  • Sheridan, B., S. D. Baker, N. S. Pearre, J. Firestone, and W. Kempton (2012), Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic coast, Renewable Energy, 43, 224233, doi:10.1016/j.renene.2011.11.029.
  • Smagorinsky, J. (1963), General circulation experiments with the primitive equations, Mon. Weather Rev., 91, 99164.
  • Sørensen, J. N., and W. Z. Shen (2002), Numerical modeling of wind turbine wakes, J. Fluids Eng., 124(2), 393399.
  • Stevens, R. J. A. M., D. F. Gayme, and C. Meneveau (2013), Effect of turbine alignment on the average power output of wind farms, pp. 112, Lyngby, Denmark.
  • Wu, Y.-T., and F. Porté-Agel (2013), Simulation of turbulent flow inside and above wind farms: Model validation and layout effects, Boundary-Layer Meteorol., 146(2), 181205, doi:10.1007/s10546-012-9757-y.