SEARCH

SEARCH BY CITATION

Keywords:

  • ADHD;
  • fractional anisotropy;
  • TBSS;
  • diffusion tensor imaging

Abstract

Current evidence suggests that attention deficit hyperactivity disorder (ADHD) involves dysfunction in wide functional networks of brain areas associated with attention and cognition. This study examines the structural integrity of white-matter neural pathways, which underpin these functional networks, connecting fronto-striatal and fronto-parietal circuits, in children with ADHD. Fifteen right-handed 8 to 18-year-old males with ADHD-combined type and 15 right-handed, age, verbal, and performance IQ-matched, healthy males underwent diffusion tensor imaging. A recent method of tract-based spatial statistics was used to examine fractional anisotropy (FA) and mean diffusivity within major white-matter pathways throughout the whole-brain. White-matter abnormalities were found in several distinct clusters within left fronto-temporal regions and right parietal-occipital regions. Specifically, participants with ADHD showed greater FA in white-matter regions underlying inferior parietal, occipito-parietal, inferior frontal, and inferior temporal cortex. Secondly, eigenvalue analysis suggests that the difference in FA in ADHD may relate to a lesser degree of neural branching within key white-matter pathways. Tractography methods showed these regions to generally form part of white-matter pathways connecting prefrontal and parieto-occipital areas with the striatum and the cerebellum. Our findings demonstrate anomalous white-matter development in ADHD in distinct cortical regions that have previously been shown to be dysfunctional or hypoactive in fMRI studies of ADHD. These data add to an emerging picture of abnormal development within fronto-parietal cortical networks that may underpin the cognitive and attentional disturbances associated with ADHD. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc.