Of mice, men and cholesterol

Authors


Abstract

We employed homologous recombination in embryonic stem cells to produce mice lacking functional LDL receptor genes. Homozygous male and female mice lacking LDL receptors (LDLR−/− mice) were viable and fertile. Total plasma cholesterol levels were twofold higher than those of wild-type littermates, owing to a seven- to ninefold increase in intermediate density lipoproteins (IDL) and LDL without a significant change in HDL. Plasma triglyceride levels were normal. The half-lives for intravenously administered 125I-VLDL and 125I-LDL were prolonged by 30-fold and 2.5-fold, respectively, but the clearance of 125I-HDL was normal in the LDLR−/− mice. Unlike wild-type mice, LDLR−/− mice responded to moderate amounts of dietary cholesterol (0.2% cholesterol/10% coconut oil) with a major increase in the cholesterol content of IDL and LDL particles. The elevated IDL/LDL level of LDLR−/− mice was reduced to normal 4 d after the intravenous injection of a recombinant replication-defective adenovirus encoding the human LDL receptor driven by the cytomegalovirus promoter. The virus restored expression of LDL receptor protein in the liver and increased the clearance of 125I-VLDL. We conclude that the LDL receptor is responsible in part for the low levels of VLDL, IDL, and LDL in wild-type mice and that adenovirus-encoded LDL receptors can acutely reverse the hypercholesterolemic effects of LDL receptor deficiency.

Ancillary