• 1
    Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 1993; 328: 18281835.
  • 2
    Roberts AB, Sporn MB. Peptide growth factors and their receptors. In: RobertsAB, SpornMB, eds. Handbook of Experimental Pharmacology. Heidelberg: Springer-Verlag, 1990; 419472.
  • 3
    Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis—a homage to the role of activated fat-storing cells. Digestion 1995; 56: 335346.
  • 4
    Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465471.
  • 5
    Wrana JL. Regulation of Smad activity. Cell 2000; 100: 189192.
  • 6
    Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-β responses. Cell 1998; 95: 737740.
  • 7
    Datto M, Wang XF. The Smads: transcriptional regulation and mouse models. Cytokine Growth Factor Rev 2000; 11: 3748.
  • 8
    Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnel BW, Richardson MA, et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 1997; 89: 11651173.
  • 9
    Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 1997; 389: 631635.
  • 10
    Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180186.
  • 11
    Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 1995; 270: 20082011.
  • 12
    Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 1999; 274: 2716127167.
  • 13
    Reeves HL, Dack CL, Peak M, Burt AD, Day CP. Stress-activated protein kinases in the activation of rat hepatic stellate cells in culture. J Hepatol 2000; 32: 465472.
  • 14
    Kretzschmar M, Doody J, Timokhina I, Massagué J. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev 1999; 13: 804816.
  • 15
    Tahashi Y, Matsuzaki K, Date M, Yoshida K, Furukawa F, Sugano Y, Matsushita M, et al. Differential regulation of TGF-β signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 2002; 35: 4961.
  • 16
    Inagaki Y, Mamura M, Kanamaru Y, Greenwel P, Nemoto T, Takehara K, ten Dijke P, et al. Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol 2001; 187: 117123.
  • 17
    Dooley S, Delvoux B, Streckert M, Bonzel L, Stopa M, ten Dijke P, Gressner AM. Transforming growth factor β signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGFβ signal transduction during transdifferentiation of hepatic stellate cells. FEBS Lett 2001; 502: 410.
  • 18
    Date M, Matsuzaki K, Matsushita M, Tahashi Y, Furukawa F, Inoue K. Modulation of transforming growth factor β function in hepatocytes and hepatic stellate cells in rat liver injury. Gut 2000; 46: 719724.
  • 19
    Matsuzaki K, Date M, Furukawa F, Tahashi Y, Matsushita M, Sakitani K, Yamashiki N, et al. Autocrine stimulatory mechanism by transforming growth factor β in human hepatocellular carcinoma. Cancer Res 2000; 60: 13941402.
  • 20
    Weinstein IB, Orenstein JM, Gebert R, Kaighn ME, Stadler UC. Growth and structural properties of epithelial cell cultures established from normal rat liver and chemically induced hepatomas. Cancer Res 1975; 35: 253263.
  • 21
    Schreiber E, Matthias P, Müller MM, Schaffner W. Rapid detection of octamer binding proteins with “mini-extracts,” prepared from a small number of cells. Nucleic Acids Res 1989; 17: 6419.
  • 22
    Sakitani K, Nishizawa M, Inoue K, Masu Y, Okumura T, Ito S. Synergistic regulation of inducible nitric oxide synthase gene by CCAAT/enhancerbinding protein β and nuclear factor-kB in hepatocytes. Genes Cells 1998; 3: 321330.
  • 23
    Hua X, Liu X, Ansari DO, Lodish HF. Synergistic cooperation of TFE3 and Smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 1998; 12: 30843095.
  • 24
    Knittel T, Kobold D, Saile B, Grundmann A, Neubauer K, Piscaglia F, Ramadori G. Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 1999; 117: 12051221.
  • 25
    Mulder KM. Role of Ras and Mapks in TGF-β signaling. Cytokine Growth Factor Rev 2000; 11: 2335.
  • 26
    Inagaki Y, Truter S, Ramirez F. Transforming growth factor-β stimulates α 2(1) collagen gene expression through a cis-acting element that contains an Spl-binding site. J Biol Chem 1994; 269: 1482814834.
  • 27
    Pinzani M, Gesualdo L, Sabbah GM. Abboud HE. Effects of plateletderived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest 1989; 84: 17861793.
  • 28
    Matsumoto T, Yokote K, Tamura K. Takemoto M. Ueno H, Saito Y, Mori S. Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. J Biol Chem 1999: 274: 1395413960.
  • 29
    de Caestecker MP, Parks WT, Frank CJ, Castagnino P, Bottaro DP, Roberts AB, Lechleider RJ. Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 1998; 12: 15871592.
  • 30
    Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis 2001; 21: 437451.