SEARCH

SEARCH BY CITATION

References

  • 1
    Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Development 2003; 120: 117130.
  • 2
    Boveris A, Poderoso J. Regulation of oxygen metabolism by nitric oxide. In: IgnarroL, ed. Nitric Oxide, Biology and Pathobiology. San Diego: Academic Press, 2000: 355368.
  • 3
    Carreras MC, Peralta JG, Converso DP, Finocchietto PV, Rebagliati I, Zaninovich AA, et al. Mitochondrial nitric oxide synthase is a final effector of thyroid-dependent modulation of oxygen uptake. Am J Physiol Heart Circ Physiol 2001; 281: H2282H2288.
  • 4
    Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996; 328: 8592.
  • 5
    Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 1103811043.
  • 6
    Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291296.
  • 7
    Kanai AJ, Pearce L, Clemens P, Birder L, Van Bibler M, Choi S, et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci U S A 2001; 98: 1412614131.
  • 8
    Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 2002; 277: 3807938086.
  • 9
    Peralta JG, Finocchietto PV, Converso DP, Schöpfer F, Carreras MC, Poderoso JJ. The modulation of mitochondrial nitric oxide synthase and energy expenditure in rat cold acclimation. Am J Physiol Heart Circ Physiol 2003; 284: H2375H2383.
  • 10
    Lacza Z, Puska, M, Figueroa JP, Zhang J, Rajapakse N, Busija DW. Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia. Free Rad Biol Med 2001; 31: 16091615.
  • 11
    Riobo NA, Melani M, Sanjuán N, Fiszman ML, Gravielle MC, Carreras MC, et al. The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. J Biol Chem 2002; 277: 4244742255.
  • 12
    Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000; 407: 390395.
  • 13
    Awad MM, Gruppuso PA. Cell cycle control during liver development in the rat: evidence indicating a role for cyclin D1 posttranscriptional regulation. Cell Growth Differ 2000; 11: 325334.
  • 14
    Lavoie JN, L'Allemain G, Brunet A, Müller R, Pousségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271: 2060820616.
  • 15
    Awad MM, Enslen H, Boylan JM, Davis RJ, Gruppuso PA. Growth regulation via p38 mitogen-activated protein kinase in developing liver. J Biol Chem 2000; 275: 3871638721.
  • 16
    Kurata S. Selective activation of p38 MAPK cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem 2000; 275: 2341323416.
  • 17
    Kulisz A, Chen N, Chandel NS, Shao Z, Schumscker PT. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 2002; 282: L1324L1329.
  • 18
    Pervin S, Singh R, Chaudhuri G. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc Natl Acad Sci U S A 2001; 98: 35833588.
  • 19
    Tanner FC, Meier P, Greutert H, Champion C, Nabel EG, Lüscher TF. Nitric oxide modulates expression of cell cycle regulatory proteins. A cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 2000; 101: 19821989.
  • 20
    Morais Cardoso S, Pereira C, Resende Oliveira C. Mitochondrial function is differentially affected upon oxidative stress. Free Rad Biol Med 1999; 26: 313.
  • 21
    Pibiri M, Ledda-Columbano GM, Cossu C, Simbula G, Menegazzi M, Shinozuka H, et al. Cyclin D1 is an early target in hepatocyte proliferation induced by thyroid hormone (T3). FASEB J 2001; 15: 10061013.
  • 22
    Poderoso JJ, Lisdero C, Schöpfer F, Riobó N, Carreras MC, Cadenas E, et al. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J Biol Chem 1999; 274: 3770937716.
  • 23
    Herrera B, Alvarez AM, Sánchez A, Fernández M, Roncero C, Benito M, et al. Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor β in fetal hepatocytes. FASEB J 2001; 15: 741751.
  • 24
    Nicoletti I, Miglioratti G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271279.
  • 25
    McCord JM, Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 1969; 244: 60496065.
  • 26
    Chance B. Special methods: catalase. In: GlickD, ed. Methods of Biochemical analysis. New York: Interscience, 1954: 408424.
  • 27
    Burk RF, Nishiki K, Lawrence RA, Chance B. Peroxide removal by selenium-dependent and selenium-independent glutathione peroxidases in hemoglobin-free perfused rat liver. J Biol Chem 1978; 253: 4346.
  • 28
    David H. The hepatocyte. Development, differentiation, and ageing. Exp Pathol Suppl 1985; 11: 1148.
  • 29
    Streumer-Svobodova Z, Drahota Z. The development of oxidative enzymes in rat liver mitochondria. Physiol Bohemoslov 1977; 26: 525534.
  • 30
    Cuezva JM, Ostronoff LK, Ricart J, López de Heredia M, Di Ligero CM, Izquierdo JM. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr 1997; 29: 365367.
  • 31
    Simmonet H, Alazard N, Pfeiffer K, Gallou C, Bewroud C, Demont J, et al. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 2002; 23: 759768.
  • 32
    Oyanagi K, Nakamura K, Sogawa H, Tsukuzaki H, Minami R, Nakao T. A study of urea-synthesizing enzymes in prenatal and postnatal human liver. Pediatr Res 1980; 14: 236241.
  • 33
    Tanaka K, Harioka T, Murachi T. Changes in contents of calpain and calpastatin in rat liver during growth. Physiol Chem Phys Med NMR 1985; 17: 357363.
  • 34
    Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279: L1005L1028.
  • 35
    Boveris A, Cadenas E. Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz ClerchL, MassaroDJ, eds. Oxygen, Gene Expression, and Cellular Function. New York: Marcel Dekker, 1997: 125.
  • 36
    Dalmau M, Joaquin M, Nakamura T, Bartrons R, Gil J. Nitric oxide inhibits DNA synthesis and induces activation of poly(ADP-ribose) polymerase in cultured rat hepatocytes. Exp Cell Res 1996; 228: 1418.
  • 37
    Fausto N, Laird AD, Webber EM. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J 1995; 9: 15271536.
  • 38
    Boylan JM, Gruppuso PA. Uncoupling of hepatic, epidermal growth factor-mediated mitogen-activated protein kinase activation in the fetal rat. J Biol Chem 1998; 273: 37843790.
  • 39
    Nelsen CJ, Rickheim DG, Timchenko NA, Stanley MW, Albrecht JH. Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo. Cancer Res 2001; 61: 85648568.
  • 40
    Matsui T, Kinoshita T, Hirano T, Yokota T, Miyajima A. STAT3 down-regulates the expression of cyclin D during liver development. J Biol Chem 2002; 277: 3616736173.
  • 41
    Rickheim DG, Nelsen CJ, Fassett JT, Timchenko NA, Hansen LK, Albrecht JH. Differential regulation of cyclins D1 and D3 in hepatocyte proliferation. HEPATOLOGY 2002; 36: 3038.
  • 42
    Czaja MJ, Liu H, Wang Y. Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. HEPATOLOGY 2003; 37: 14051413.
  • 43
    Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L. ERKMAPK activity as a determinant of tumor growth and dormancy; regulation by p38SAPK. Cancer Res 2003; 63: 16841695.
  • 44
    Galli S, Labato MI, Bal de Kier Joffé E, Carreras MC, Poderoso JJ. Decreased mitochondrial nitric oxide synthase activity and hydrogen peroxide relate persistent tumoral proliferation to embryonic behavior. Cancer Res 2003; 63: 63706377.