Tracking cccDNA in chronic HBV infection



Hepatitis B virus (hepadnavirus) infections are maintained by the presence of a small and regulated number of episomal viral genomes [covalently closed circular DNA (cccDNA)] in the nuclei of infected cells. Although a number of studies have measured the mean copy number of cccDNA molecules in hepadnaviral-infected cells, the distribution of individual copy numbers have not been reported. Using a PCR-based assay, we examined the number of cccDNA molecules of the duck hepatitis B virus in single nuclei isolated from the liver of a chronically infected duck over the course of 131 days of infection. Nuclei were isolated from frozen serial biopsies and individually deposited into PCR microplates by flow sorting. Each nucleus was assayed by nested PCR for cccDNA and for cellular IFN-α genes as an internal control. We found that 90% of the nuclei assayed contained between 1 and 17 cccDNA molecules, with the remaining 10% containing more (90% confidence), and that differences in the mean number of copies and distribution of copy numbers occurred within the same animal at different times postinfection. Overall, the data suggest (i) that the number of cccDNA molecules per cell may fluctuate over time, and (ii) that, according to these fluctuations, a substantial fraction of cells may contain only one or a few copies. We infer from the results that infected hepatocytes express virus at different levels and that during cell division it is possible to segregate cells containing no cccDNA. (Copyright 2003, National Academy of Sciences, U.S.A.)